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NATIONAL ADVISORY COMMITTEE FOE AERONAUTICS 

TECHNICAL NOTE NO. I832 

SMALL BENDING AND STRETCHING OF SANDWICH-TYEE SHELLS 

By Eric Reissner 

SUMMARY 

A theory has been developed for small bending and stretching of 
sandwich—type shells. This theory is an extension of the known theory 
of homogeneous thin elastic shells. It was found that two effects are 
important in the present problem, which have not been considered 
previously in the theory of curved shells:  (l) The effect of transverse 
shear deformation and (2) the effect of transverse normal stress 
deformation. The first of these two effects has been known to be of 
importance in the theory of plates and beams. The second effect was 
found to occur in a manner which is typical for shells and has no 
counterpart in flat—plate theory. 

The general results of this report have been applied to the 
solution of problems concerning flat plates, circular rings, circular 
cylindrical shells, and spherical shells. In each case numerical 
examples have been given, illustrating the magnitude of the effects 
of transverse shear and normal stress deformation. 

The results of this investigation indicate the necessity of 
taking account of transverse shear and normal stress in sandwich—type 
shells, as soon as there is an order-of-magnitude difference between 
the elastic constants of the core layer and of the face layers of the 
composite shell. It was found that the changes due to transverse 
shear and normal stress deformation in the core may be so large as to 
be no mere corrections to the results of the theory without transverse 
core flexibility. 

The actual magnitude of the changes is greatly dependent on the 
geometry and loading condition of the structure under consideration 
so that no general rules may be given which indicate for which elastic 
modulus ratio the changes begin to be significant. 

Solutions of problems in the present theory may in general be 
obtained by mathematical methods which are similar to those employed 
in the theory of plates and shells without the effect of transverse 
shear and normal stress deformation included. The present work does 
not include consideration of buckling and finite deflection effects. 
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INTRODUCTION 

In this report an extension of the classical theory of small 
"bending and stretching of thin elastic shells is considered. Instead 
of a homogeneous shell, investigation is made of a shell constructed 
in three layers: A core layer of thickness h with elastic 
constants Ec, Gc, and Vc and two face layers of thickness t with 

elastic constants Ef, Gf, and Vf. In the developments certain 

restrictive assumptions are made which somewhat limit the general 
applicahility of the results. In so doing formulas are ohtained which 
are as compact as possible while still describing the essential 
characteristics of the sandwich-type shell. 

The thickness ratio t/h is assumed small compared with unity; 
at the same time the ratio Eft/Ech is assumed large compared with 
unity. This latter assumption means that the face material is so 
much stiffer than the core material that the contribution of the core 
layer to stress couples and tangential stress resultants of the composite 
shell is negligible. It is known that for flat plates these assumptions 
necessitate the taking into account of the effect of transverse shear 
deformation.  (See, for instance, reference 1.) The same would he 
expected to he true for curved shells, and the present report, therefore, 
gives a system of equations in which this effect is incorporated. 

A further effect which, it appears, has not "been considered 
previously in the analysis of small deflections of sandwich structures 
is the effect of transverse normal stress deformation. In the present 
report it is shown that this effect arises in a manner which is typical 
for shells and has no counterpart in plate theory.  It may he likened, 
roughly, to what happens in the "bending of curved tubes. 

The process "by which the general results of this report are 
ohtained is as follows: First, each of the face layers of thickness t 
is assumed to behave like a thin shell without tending stiffness. The 
loads applied to these face shells, henceforth called face membranes, 
are-of two kinds:  (l) External loads and (2) loads caused hy the stresses 
in the core layer. Next, the core layer of thickness h is assumed 
to "behave like a three-dimensional elastic continuum in which those 
stresses which are parallel to the faces are negligihle compared with 
the transverse shear and normal stresses. On the "basis of these two 
assumptions three steps are carried out. First, the equilihrium 
equations of the core layer and of the face layers are ohtained. Then 
an appropriate expression for the strain energy of the composite 
structure is derived. Finally, Castigliano's theorem of minimum 
complementary energy is used to ohtain the relations which connect 
stress resultants and couples of the composite shell with the quantities 
which describe the state of deformation of the composite Shell. 

V 
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The system of equations which is obtained in the foregoing manner is 
specialized for the following cases: 

(1) Flat plate 

(2) Circular ring 

(3) Circular cylindrical shell 

(k)  Spherical shell with axisymmetrical deformation 

In each case a number of problems are solved explicitly and the 
appreciable effect of transverse shear and/or normal stress deformation 
is illustrated numerically. 

This work was conducted at the Massachusetts Institute of 
Technology under the sponsorship and with the financial assistance 
of the National Advisory Committee for Aeronautics. 

SYMBOLS 

h core—layer thickness 

t face—layer thickness 

|,,  |o curvilinear coordinates on middle Burface of 
composite shell 

t, distance coordinate measured along normal to 
middle surface of shell 

a,, a,p coefficients of linear element on middle surface 
of shell 

E1, Ep principal radii of curvature of middle surface of 
shell 

Nnmu direct stress resultants in upper face membrane; 
n = 1,2; m = 1,2 

TSTmi direct streBS resultants in lower face membrane 

Pnu* Pn2 tangential components of external load intensity 
on upper and lower membraneB 

q t  q-, normal components of external load intensity on 
upper and lover membranes 
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T .., T f. components of transverse shear stress in core layer 

Cu component of transverse normal stress in core layer 

values of transverse shear stresses for £ = ± h/2; 
n = 1,2 

values of transverse normal stresses for £ = — h/2 

T ►. . T n£u* n£ 2 

%, %> 

s 

Jt 

Ef) Gf, V 

Ec> Gc 

ul> u2 

<V 0£Z 

T Y values of transverse shear stresses at middle surface n<,m 
of shell 

transverse shear stress resultants 

N direct stress resultants parallel to middle surface 
for composite shell; n = 1,2; m = 1,2 

ML—. stress couples for composite shell; n = 1,2; m = 1,2 

p tangential components of external load intensity for 
composite shell; n = 1,2 

q normal component of external load intensity for 
composite shell 

external load intensity term defined "by equation (22) 

strain energy 

elastic moduli of isotropic face—layer material; 
v = Vf 

elastic moduli in transverse direction of core—layer 
material 

effective tangential components of displacement of 
elements of composite shell 

w effective normal component of displacement of elements 
of composite shell 

ß. ßp effective components of change of slope of normal 
to middle surface of composite shell 

e£m component of strain (€£m = ^m/Ec) 

C* = 2tEf 
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D* = (1/2) t(h + t)2Ef 

C = C*/(l -V2) 

D bending stiffness factor (D = D*/(l - v2)) 

x, y Cartesian coordinates in plane of flat plate 

r, 0 polar coordinates in plane of flat plate 

a radius of circular ring, cylindrical shell, and 
spherical shell 

x, 0 surface coordinates on cylindrical shell 

\l3  X2J *02      parameters defined "by equation (63) 

u = n/l 

1 half wave length of sinusoidal load distribution 

%, ^2 quantities defined "by equation (197) 

k complex quantity defined "by equation (200) 

$,  0 surface coordinates on spherical shell 

(a quantity defined by equation (7^) 

K. parameter defined by equation (190) 

I - GENERAL iTHEOEY 

Statics of Sandwich-Type Shell 

In order to derive a complete system of equations for the shell 
composed of face layers and core layers it is necessary first to 
consider separately the statics of the face layers and that of the 
core layer of the shell. Combination of the results obtained for 
these two components of the composite structure must and will lead 
to those differential equations of equilibrium which hold for elements 
of a shell, whether this Bhell is of homogeneous or nonhomogeneous 
construction. In addition, however, relations are obtained which 
are characteristic of the sandwich-type shell. 

Coordinate system on shell.- A curvilinear coordinate system 
(ilt i2>  £) ls introduced as follows: Let |x and |2 be coordinates 
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on the middle surface of the composite shell and let £ he the distance 
of a point of the shell from its middle surface, measured along the 
normal to the middle surface. In order that this system of coordinates 
he an orthogonal system, choose the £1, £2 

cui,ves aB lines of curvature 

on the middle surface (in the case of shells of revolution the lines of 
curvature are identical with the meridians and parallels on the middle 
surface). 

The linear element in the foregoing system of coordinates is of 
the form 

ds2 - ai
2(l + I-)2 dlx

2 + a2
2(l + ±-J d£2

2 + d£2 (1) 

where an and 09 are the coefficients of the linear element on the 
middle surface and Ej and E2 are the principal radii of curvature 
of the middle surface (see fig. l). Formulas for the calculation of 
the quantities (% and En are contained in texts on differential 
geometry. They are collected, together with other results, in 
reference 2, which deals with the theory of homogeneous thin shells. 

Statics of face layers.— The face layers are treated as thin shells 
of thickness t and it is assumed that the "bending stiffness of these 
thin shells ahout their own middle surface may he neglected.1 Because of 
this neglect from now on they will he designated as face membranes. 

The middle surfaces of the face membranes evidently are given with 
reference to the three-dimensional system of curvilinear coordinates 

hy  £ = i(h + t) and £  = - fjj(h + t). From equation (l) it follows 

that the linear element on the ndfidle surfaces of the face membranes 
is given hy 

■if  - a^(l ± Sgff US * «^(l ± *££) «2
2 + «

2     (2) 

The components of external load intensity on the upper and lower 
membranes are designated hy plu, p^, and g^ and hy plz, p2^, and q^, 

respectively (fig. 2). The core—layer stresses which act on the upper 
and lower membranes are given as T^, T2£U, and cx(;u and hy T^, T^^ 

-'■This, of course, means that no local'"buckling phenomena are 
considered in the present work. 
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and o>7J respectively. Finally, the direct stress resultants in the 

upper and lower face membranes are designated "by N-QU, N]_2U.» 
N
21U* 

and N22u and "by %i2, W122* W21Z* ax)ä-   N22Z* respectively (fig. 2), 

There are then three equations of force equilibrium for the 
elements of each of the two membranes. Writing 

«nu = ^ 

<*n7 » <% 

(3) 

the equations for the upper—face membrane are the following : 

^ßM + ^m^ + ^^^-^^^ + ai^{Vlu-rliu),0    (k) 
ai- at, as 

^^ + ^^ + ^21u^-^llu^ + alua2lx(v2a-r^u) = 0    (5) 
ö6l as '21u asx öle 

«■lU01^! 
Nuu + 

N22u 

«4 + W) E4*^) 
1u + ff£u (6) 

The corresponding equations for the lower—face membrane are 

*gfill + JSägBLl + N122 |^i - N222 *21 + o^fci + TlSl) - 0    (7) 

^2! + 52lfei + N2iz ^2Z _ Niii |l2 + aiza2z(P22 + Ta5l) - 0    (8) 
hi, as2     ' "'*■" aii     "XJ-t as2 

2These are obtained from the corresponding equations of reference 2 
with (% changed to cc^ and with stress couples and transverse shear 

stress resultants omitted. To make up for this omission, the loads on 
the two membranes are assumed to act at their middle surfaces; this means 
terms of the order t/R are neglected (hut not terms of order h/R). 
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v-ll^Zl 
Will N, 221 

E- (i-W) ^-w) 
- ii - ü£z = 0 (9) 

As tending moments and transverse shears are assumed not to "be 
acting in the individual membranes the moment equilibrium equations 
"become the symmetry relations 

%2u = N21u 

%2Z = N21Z 

(10) 

Before analyzing the state of stress in the core layer it is 
convenient to see what relations follow from equations (k)  to (9) for 
the composite shell. 

Statics of composite shell.- It may he seen that, in view of the 
fact that all face-parallel stresses in the core layer are neglected, 
the following expressions for the face-parallel stress resultants and 
couples of the composite shell are obtained: 

^-^^^lu^-W) *11 
Dr- ill 

w12 = [1 + (1+H")^+ (x - W)nl2' 

*21 =  (l + ^)%2u + ' (l " ^f)%2Z 

%> =  (1 + ^)N22u +   (l - ^r)N22Z 

M- 11 
h + t i ♦ ^"iiu - (1 - ^»m 

%-H1 1 + 2L±-tV10l,'- /l_i-±-iV 2ET-"12u &zrri2i 

(ID 

(12) 

(13) 

W 

(15) 

(16) 



NACA TW No. 1832 

** - H* I1 + ^r)H22u - (1 - ^"fej]        as; 

In the same way the following erpress ions are obtained for components 
of external force and moment intensity: 

«- (*+^X1+\^%♦ (1 - w) (* - W>>   (ao) 

}+^X1 +' *£*>» - C1 - ^X1 - ^H(21) %.1L±± 

Further, a load term of the following form will he encountered: 

•-i '(* - WX1♦WK - C1 - WX1 - W>>]   (22) 

which hears a relation to equation (20) similar to that which equation (21) 
hears to equation (19). This last term would represent, for a homogeneous 
shelly the average transverse normal stress at any station of the shell, 
assuming that the loads qu and qj alone are responsible for this stress, 
For a homogeneous isotropic sh9ll this term is of no Importance. For a 
sandwich—type shell, as will he seen, it may sometimes he of importance. 

In order to obtain force and moment equilibrium equations for the 
composite shell the face-membrane equilibrium equations (k)  to (9) are 
combined suitably. Adding equations (k)  and (7), and (5) and (8), 
respectively, the two equilibrium equations for the force components 
parallel to the middle surface of the shell are obtained. I11 order to 
reduce them to known form (see reference 2) the following relations are 
used between the core-layer—surface shear stresses r  t-      and T *■ 

ntu      n£7 
-and the transverse shear stress resultants Q-, and Qo. 
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9a (23) 

- Qn W 

Equations (23) and (24) will subsequently be shown to be in agreement 
with the usual definition for the transverse .shear stress resultants "by 
consideration of the stress distribution of the core layer. 

With equations (23) and (24), there are obtained by combination of 
equations (h)  and (7), sxiä.  (5) and (8) - carrying out addition as well 
as subtraction - the following four equations: 

^^^^^-M^^K-Q^O 
öli **« 

"12 öl 

(25)* 

(26)< 

(27)^ 

^2M12 + ^ + M2i|,_Mll|| + aia2(m2_Q2)=o 
at-i 

(28)^ 

Two further equations are obtained by adding and subtracting, 
respectively, equations (6) and (9). Adding equations (6) and (9) and 
taking account of equations (ll), (lb),  and (20), there follows: 

<X-i(Xp 
RI I2) - .♦ (- *#)(* + ^>s. 

(1 - WX1 - Wh> = 0 (29) 
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In order that this reduces to the correct equation of transverse force 
equilibrium as given in reference 2, 

— cuct,2 (1 ♦ WX1♦WK - i1 - WX1 - WH 

5h      ai« u ; 

Equation (30), just as equations (23) and (2k),  can again he verified 
independently by consideration of the state of stress in the core layer. 
On the basis of equation (30), equation (29) is written in the form . 

"air + "air " ai^\JT+ i^ry + ai^g = ° (31) 

The last equation, use of which is required for the sandwich—type 
shell and which has not previously "been given, is obtained by 
subtracting equation (9) from equation (6). Taking account of 
equations (15), (l8), and (22), there results 

+ (1 - wX1 - wH - ° (32) 

Provisionally, there is written 

i1 + ^(1 ♦ ^>£U 
+ (1 " ^)(i " ^{l - 2»J-  (33) 
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and it will sub sequent ly IDS shown that o>m represents the value 

of o> at the middle surface of the shell. Combining equations (33) 

and (32) yields 

Equation (3^) has no relation to the sixth equation of equilibrium 
for an element of the shell which expresses the condition of moment 
equilibrium aliout the normal to the middle surface. That equation which, 
as is known, is an identity when resultants and couples are expressed 
in terms of stresses does not occur in the present derivations, or rather 
it is contained in equations (12), (13), (l6), and (17), which give 
explicitly the slight differences "between R]_2 and ^21.» and M12 

and M?]_. 

Stress distribution in core layer.— In order to verify independently 
equations (23), (2k),  and (30), as well as for the subsequent derivation 
of appropriate stress—strain relations, it is necessary to determine the 
distribution of stress in the core layer. 

,/ 
Assuming that the components of stress CT-^, C^J 

aru^ T12 ^n *-*ie 

core which would contribute to stress resultants and couples of the 
composite shell are of negligible importance,3 these components of 
stress may he set equal to zero and only the components of transverse 
shear stress and transverse normal stress T]j;, T2£, and a(; may "be 

retained. The differential equations of equilibrium for these three 
remaining components of stress in the system of curvilinear coordinates 
defined "by equation (l) are ohtained, from the general form of these 
differential equations in reference 3, in the following form: 

ST 

a_ 

\ + ffi1 + $4 - ° (35) 

iYY-, . -I 1 + B   )  I1 + B   Vptl   = ° (36) 

3lt is for this purpose that the order—of-magnitude relation 
hEg/tEf « 1 is assumed. 
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(- 
+ S-)(i + S-\ot «I^I

1
 -^-^ji1 +

 ^-K 4<i+& 
&«« {-M r2i = 0 (37) 

The values of the three stress components at the middle 
surface (£ = 0) are designated by the subscript m. Integration of 
equations (35) to (37) then gives 

Tif   = rl£ 
rJ&L 

(l + £Al)  (l + 5/R2) 
(38) 

r2t ££*_ 
(l + t/R2f(l + g^) 

(39) 

1 + £}(1 + £h = ^ "i^s^ + t/hj   M2^L + ?/R2/ 
m 

The transverse shear stress resultants Qx and Q2 are obtained 
from equations (38) and (39) in the form4. 

nCh+t)/2 

U-(h+t)/2 

_   (h  +t)Tngm 

•^i + ^)d^-wr^_r^x 

_/h_4_t} 

\2En/ 

(M) 

The integration must he extended over the thickness of the core 

^ir^ aJso °Ter ^^ the thickness of the face layers, in accordance 
vith the prior assumption that the stresses Tn{;u, T £, ot 

and crgz may he taken to act at the middle surfaces of the respective 
face membranes. 
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Now as intended, the proof is carried out of equations (23), (2k), 
and (30)^ which were used to obtain the differential equations for the 
composite shell. 

To verify equation (23), from equations (38) and (39) for the 
left-hand side of equation (23), the following equation is ohtamed: 

Tn£m 
TnU   = ■ h + t    Tn£m 

and this, in conjunction with equation (kl),  verifies equation (23). 

To verify equation (2k)  in the same manner, from equations (38) 
and (39) for the left side of equation (2k),  the following equation 
is obtained: 

"2  (1  h + t  T  h + t 
m_ 
2 

2En 

and this, in conjunction with equation (kl),  verifies equation (2k). 

To verify equation (30), equation (ko)  is used to write for the 
left side of equation (30) 

5   /«2TlU  V + J_/_^2|m_\ +    a   /a2TlU   \ + J_/V 2t m 

1    ~^T/        \     ^2}        \     sei/       \     2E2 

_ ^ / gaPTlCm  \ + ^ I   2alT2Cm 

2R1 J / \       \  2E2 

and this, in conjunction with equation (kl),  verifies equation (30). 
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The section on the stress distribution in the core layer is 
concluded by listing the form which equations (38) to (1*0) for the 
stresses in the core layers assume for "thin" shells, that is for 
shells for which h/R « 1. From equations (38) and (39) in' 
conjunction with equation (1*1), it follows that        ' 

rl£ = 

r2? 

Qi 
h + t 

__^_ 
h + t 

W 

From equation (1*0), in conjunction with equation (1*1), it follows that 

W6 - WU - pi^gl + *jfc) (*3a) 

It is necessary to note for some of the following considerations 
that,  in view of equation (31),  instead of equation (l*3a) there may 
he written 

at- = i = °Sm- h + ft 
!ii 

tVBx 
Ng2 
E2 

(b3b)* 

It is seen that in this approximation the transverse shear stresses are 
uniform across the. thickness of the core layer, while the transverse 
normal stress is composed of two terms, one uniform across the thickness 
and the other varying linearly across the thickness. 

No further calculations are needed with reference to the state 
of stress in the composite shell. The next step is to complete the 
system of differential equations for stress resultants and couples by 
deriving an appropriate system of stress-strain relations. 

Strain Energy of Sandwich-Type Shell 

In calculating the strain energy of face membranes and core layer 
it is assumed that both are Isotropie and elastic, with elastic 

Ec, Vc,   Gc =EC/2(1 +VC) constants    Ef, Vf = V,  Gf = Ef/2(l + V)  and 
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Poisson's ratio for the face membranes is written without a subscript 
"because, in view of the assumed stress distribution, there is no explicit 
occurrence of Poisson's ratio vc for the core layer. 

The strain energy for the composite shell is the sum of the strain 
energies for the face membranes and for the core layer 

it - rtf + Hr (kh) 

For the purpose of obtaining stress-strain relations, hoth «f and *0 
are expressed in terms of stresses rather than in terms of strains. 

Strain energy of face layers.- Considering that the element of 

area on the middle surfaces of the membranes is of the 

form Wl ± ^)(l ± ^) 461 48 2 ^  that the stre8SeB 

in the memhranes are the stress resultants divided hy the memhrane 
thickness t, there is, from well-known principles, the following 

relation: 

A x(1 + 2^r)(1 + W)aia2dlldl2 

+
 iffd-^lll2' + W22Z2 - ^111^21 + 2d + V)%27

2] 

(l - l^)(l - ^)aia2 di, «8 (*5) 

Equation (45) is transformed into an expression containing stress 
resultants and couples of the composite shell hy means of equations (11) 
to (l8) which lead to the relations 
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2(1 + ^)Niiu - »ii + FTT *u 

2(1 " ^)Nm - »n - FTT %l 

(46) 

with corresponding formulas for Nj2 and 1&22' 

In this transformation the cases are limited to those for 
which h/R « 1. Then, with the two constants C* and D* defined "by 

C* = 2tEf 

D* = J t(h + t)^ 
(hi) 

the following expression for jtf is ohtained: 

*f = i cthi2 + NQO    - 2vN-nNoo + 2 "22 <2i»22 >(1 + vjN-Lg2] 

"I£ML1
2
 + y^2    ~ 2VMLIM22 + 20- + v)M12^|f «l0^ d|l dl2       ^8^* 

It may he remarked that equation (k8)  could have "been given directly, "by 
analogy with known results for the Isotropie homogeneous shell. 

Strain energy of core layer.— With the stresses cr-^, cr2, and Ti2 

assumed to vanish, there results for the strain energy of the core layer 

^Note that equations (k6)  and corresponding equations can he used 
to calculate the stresses in the two different face membranes, once 
stress resultants and couples in the composite shell are known. 
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(49) 

Again the terms £/R compared with unity are neglected and, consistent 
with this neglect, the values of the stresses Tn£ and a^    are taken 

from equations (42) and (43). 

The value of cx(; may he chosen from either equation (43a) or 
equation (43b). Hie form of the results depends somewhat on which of 
the two equations is chosen, in the sense that the meaning of the 
deformation quantities which are to he determined depends on which 
of the two equations is taken. This question is decided in the 
following manner: As all resultants and couples enter the expression 
for the strain energy only as themselves and not in differentiated 
form, except when equation (43a) is used, the selection of equation (43h) 
for o> is proposed, therehy excluding derivatives of stress resultants 

and couples from the expression for the strain energy jt. 

Introducing then equation (43"b) into equation (49) yields 

«0 = r- 

[IP 

UÜ 

Q12 + Q22 ,1 

(h + t)2Gc 
E° 

™m  h + t\Ex   E2 
- q 

X d^CGjOVD   dli  dig (5.0) 

The integration with respect to 
equation (50) "becomes 

£    is carried out and 

Q32 + %2 

(h + t)Gc 

h + t 
I, 

at m fc 
H22 

- 1 a^ag d^ dl2 (51)# 

It was to he expected that the terms containing the modulus of 
rigidity Gc would occur in the foregoing form. The contribution of 
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the present report up to this point, besides giving the new equation (34) 
for cr£m, is thought to he the determination of the form in which the 

effect of transverse normal stress deformability manifests itBelf in 
the strain energy of the sandwich shell. 

Stress-Strain Eolations for Composite Shell 

In what follows a system of stress—strain relations for the com- 
posite shell is obtained "by the use of Castigliano's theorem of minimum 
complementary energy. The manner in which the theorem is used here 
appears to have been employed first by E. Trefftz (reference k)  for the 
purpose of avoiding geometrical considerations in the derivation of the 
stress-strain relations for thin homogeneous shells with small defor— 
mations, without consideration of the effects of transverse shear and 
normal stress deformation. 

Assuming for the present purpose that all boundary conditions for 
the shell under consideration are stress conditions, the theorem 
consists in the statement that among all statically correct states of 
stress the actually occurring state of stress makes the strain energy 
of the system a minimum. In the application of the theorem the fact 
is taken into account that statically correct states of stress only 
are to be compared, by means of the Lagrangian multiplier method. 
Before minimizing * an integral is added to it which contains the 
six equilibrium equations (25) to (28), (31), and (3^), each of the 
six equations multiplied by a Lagrangian multiplier. It can then 
be shown, by using Castigliano's theorem with prescribed boundary 
displacements instead of with prescribed boundary stresses, that 
each of the six multipliers has the meaning of one of the displacement 
quantities which occur in the shell problem. 6 

With the foregoing understanding of the meaning of the multipliers, 
the multiplier of equation (25) is designated by ui; that of 
equation (26), by u2; that of equation (27), by ß]_; that of 
equation (28), by ß2; that of equation (31), by w; and finally that 

of equation (3^), by k. It is known that uj_, u2, and w represent 

the effective components of displacement in the ij, t2, 
ajnä-    £ direc- 

tions, respectively. Further, it is known that ß-^    and ß2 represent 
the angles through which the normal ±0  the middle surface of the shell 
turns toward the £1 and £2 curves, respectively. There is no 

°For the special case of the flat plate this has been carried out 
explicitly in reference 1. For the case of the homogeneous shell, 
without effect of transverse shear and normal stress deformation, the 
proof has been given in reference k.    The proof for the more general 
case which is here considered is not included as it does not offer any 
clearer insight into the problem and tends to lengthen the analytical 
discussion. 
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immediate simple geometrical interpretation for k and, while such 
interpretation in terms of an average transverse normal strain might 
he deduced herein, k is considered as an auxiliary variahle presently 
to he eliminated. 

Combining now equations (kk),  (U8), (51), and (25) to (28), (31), 
and (3*0 in the manner indicated, the following variational equation 
results: 

no 
io 

uu 

, ^[1^2 + N222 - 2vN11N22 + 2(1 + V)N122] 

+ whl2 + M222 " 2VML1%> + 2(1 + V)M12
2] 

%2 + Q22      h + t 
+ :  + 

(h + t)G, 

nn 
c        Ec 

0       i /%i      W22 
°lm    + — ( — + — - 4 12\pi        E2 

^aja2 dl^ dl2 

+ S 

UU 

ul 
dagNll ^ SaiN21 A w,„ 5^1 _ W, 
Mi öle 

+ N12 at, 22 
ckx,2 

+ aia2te^ + PI 

+ a-iot^ (I♦ »)" 

+ u2 

+ ßl 

öagN^      00^2 fefe      w      ^1 
^7"      "^2~        21 517 " %1 *2 

0U2M11      Saitfei öai      „      dag. 
TIT" + _

MJT 
+ Ml2 Wr>    "& c% 

+ a^ctg^i - Qj) 

+ aia2(m2 — Q2) 

+ ß2 

+ w 

^2ML2      öai^2      „     öo2 _ „     öai 
ol! öl2 ^X *'-       ^L1 *f 0%      "J-L hi2 

öa2Q^      da-j^ 

~oTj~ + "äfi~ $ 
aia2l ^ + ^ - Q 

+ k ff& m 
1    /Mn   ,  ^fe2\ _ n 

h + t^Ex    + E2  ) >■ aii di2 = 0 (52) 
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The variations in equation (52) are carried out and integration is 
done "by parts to eliminate derivatives of variations in the double 
integral. The line integrals along the "boundary which occur due to 
this integration "by parts vanish, "because it has "been assumed that all 
stresses are prescribed at the "boundary and therefore their variations 
vanish at the "boundary. 

The resultant variations! equation is 

nn 

du 

w 11 E Nil - VN22 _ _L £U1 _   u2    dog _ v_ + h + t  fan + N22 _ 
C* al aix      <*1<*2 ö!2      Ki T 12EcEi\Ei E2 •)" 

+ h + t  /fou   |  N22 
laEci^^ Rr + 8N12 

2(1 + V)FL2       1   öui 

Ul    da-^       1   du2        u2    ^°°2 
+ «l0^ ol^ " al öI7 + ^2 0I7 + 5M- 11 

%1 - V%> 
D* 

dßj        ß2    da, 
al öli      al°^ oi2      (h + t)Ei al°2 

d\       D* «2 hi2      «laß öli 

(h + t)E2 «l0^ 
+ BM-L2 

[2(1  +  A 
L        D* 

ßl    öai       1   dß2   ,     ß2    öa2 

V)M^2 _ i ößi 
02 öl2 

Ql 
«l0^ ö|2     al öli     "l0^ ÖIL 

+ 8Q1 ui 
(h + t)Gc      E-L 

-ß,-!^. ßl al öli + BQg N   _ + ^2_ßp_l_^_ 
t)a.      E9       P2      a2 ölp 

= 0 (53) 
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As all nine variations in equation (53) ar© independent of each other, 
it follows that the contents of all nine brackets in equation (53) mast 
vanish separately. Thus the following nine stress-strain relations are 
obtained for the sandwich shell, indicating with an asterisk those 
which appear in final form, 

Hü/,  (h + t)cA  K22/,  (h + t)C*\ 
C* \^ +    12EcEl

2y  C* \  121cElE2 J 

" «1 ölx  aia2 ö|2  
El   12EcEi 

Wi A (h + t)cA _ N11/ _ (h + t)C*\ 
C*~\   12ECE2

2 y  C* V  l2EcElE2 J 

= J^^Z + _2i3L_ 5^2 + w_ + (h + t)q 
«2 5|2  »x

0^ Öli  E2   12EcE2 

g(i + v) Hlo = El _L/H1\ + 2£ -ä-/^
2-' 

C*    12  02 älgVa^  ai at^ 

(55) 

(56)- 

MLI - VMg2 _ _i_ Ml + ß2 ^21 k_   1 (57) 
D*    "ax 0%  «i^ öl2  

ala2 (h + t)Ex 

M?2 ~ vMll = J. ^2 . _?_!_ 5^2 _ _JL_    1         (58) 
D*      »2 d!2  

ala2 Six  »l0^ (h + t)E2 

£(i±J!l %2 = E1 JLM) + ^ ^_/g\ (59)^ 
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(h + t)Gc  
P1  al Öli  El 

(6oy 

(h + t)Gc 
P2-  <*2 5I£  E2 

(61)* 

SB = __JL. Ec ~  a-jctg (h + t) (62) 

It may be verified that the meaning of the quantities u^t  u2, w, ß^ 
and ß2 is as has "been indicated "by comparing equations (54) to (6l) 

with the corresponding equations of reference 2 for the homogeneous 
shell with Ec = Gc = 00. 

The system of equations (5*0 to (62) may he "brought into a 
slightly more concise form as follows: Define the quantities X.-j_, X-2, 

and \n 2 hy 

1 (h + t)t Ef 
** " 2 ~T^ H! lr 

.   1 (h + t)t Ef 
X2 = 2  E22   - E„ 

>.,„ - 1 (h + t)t Ef 12 ~ 2  EnEc  ~ \L*2 E„ 

(63) 

and eliminate k from equations (57) and (58) by means of equation (62) 
and the equilibrium equation (3^). Retain equations (56) and (59) to (6l) 
in the foregoing form and write for equations (5^-) and (55) 

(l+l XI)NII - (v - i Xi2)w22 = c* 
öai 

ala2 d!2. 
u2 

*) 

(h + t)C* 
12ECR! 

(W 
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(, + i ^ . (v _ i ^ . c*(4 || + ^ |g + JL) 

(h + t)C* 
12ECK2 

q (65)^ 

Equations (57) and (58) become, if D*/(h + t)Ec = I t(h + t)Ef/Ec, 

according to equation (^7), 

(1 + nni - (v - ^te - »fe |fi ♦. ,& f|) + ^ B   (66)* 

(1 + ^.fe, - p- - ll2)«U - D*(i || + ^ |f) ♦ ^ s    (67). 

With these, last transformations there is obtained a system of 
equations which is formally equivalent to the corresponding system of 
equations for the homogeneous shell. The 5 equilibrium equations (25) 
to (28) and (31) and the 8 stress-strain relations (56), (59), (60), (6l), 
and (6k)  to (67) are used for the determination of 13 quantities: Fire 
stress resultants N-^, N22, N-J^J Q-|_, and QQ;  three stress couples M-Q, 

Jk2, 
8Lnä-    Mi2' an(i five displacements and changes of slope u^, x^,,  w, ß-^, 

and ß2. The quantity a£m which occurs in the sixth equilibrium 
equation (equation (3^)) may be determined directly, once the shell 
bending and stretching problem has been solved. 

It is seen that the effect of transverse shear deformation enters 
equations (60) and (6l) only and that, when Gc = aa}  these equations 
give the values of the known theory of homogeneous shells without 
transverse shear deformation (references 2, 3, and k). 

The effect of transverse normal stress deformation enters equa- 
tions (6k)  to (67) only.  It is seen that it is, in part, responsible 
for the occurrence of apparent stiffness factors C*/(l + X.) 
and D*/(l + X). Thus, according to equation (63), the effect of . 
finite Ec is to make the shell more flexible in bending and stretching 
than it would be with Ec = ». This effect, however, is present only 
in curved structures and not in plates and straight beams, as the 
quantities X have one or both of the radii of curvature in the 
denominator. A further effect of finite Ec is occurrence of the 
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external load terms q and s in the stress-strain relations. Both 
these effects represent, roughly speaking, what happens to the shape 
of an element of the composite shell if the length of the core fibers 
in transrerse direction is changed, without any stretching or 
compressing of the face-membrane elements. 

Having derived the general system of equations for the small 
"bending and stretching of sandwich-type shells, it remains to apply 
these equations to specific problems which may "be of interest and to 
determine the quantitative effect of the terms which are characteristic 
of the sandwich-type shell. Some of this work is done in part II of 
the present report, which follows. 

It may "be stated once more that for these specific applications 
the five equilibrium equations (25) to (28) and (31) and the eight 
stress-strain relations (56), (59), (60), (6l), and (6k)  to (67) are 
used. 

II - APPLICATIONS OF GENERAL THEORY 

Flat Plates 

The prohlem of the flat plate is considered first in order to show 
that the results of reference 1 are contained in the present results 
and in order to solve some problems in the theory of plates which have 
not "been solved in reference 1* 

Rectangular plates.- Using notation which is customary in plate 
•y there is set 

ii = 1 I2 = y al = °2 = ■"• El = E2 = °° 

U"L = u Up = v ßl = ßx ß2 = ßy 

Nil = *x N12 = Nxy N22 - Ny % = Ox 

02 = Qy MLI-M* M12 =M*y %> = MJ 

Pi - Px P2 = Py m1 = mx mg = ny 

*>   (68) 
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The equilibrium equations (25) to (28) and (31) "become 

ON-     ÖNjy 

ox   oy 

-H. + -_i + jy = 0 
öx   öy 

(69) 

äQ* ÖQy 
ox   oy 

ox   öy 

dx   öy 

+ % = 0 

Qy + my = 0 

(70) 

The stress-strain relations (56), (59), (60), (6l), and (64) 
to (67) "become 

NT - VNV = C* du ax 

Ny " VNx = c* ^ 

2(1  +  V)]^  =  C*(^  + 

(71) 

^ = (h + t)Gc(ßx + gt) 

Q,  =  (h  +  t)GC(ßy  +  l) 
(72) 
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Mj - VM^ = D* 

Mjr - VMj. = D* 

Ößj 

ÖX 

dß 
öy 

2(1   +  VJMjcy   =   D*f: *fix   .   ^ 
dy        öz 

(73) 

As in the small-deflection theory of homogeneous plates, the 
equations for stretching (equations (69) and (71)) are independent of 
the remaining equations for transverse "bending. Equations (69) and (71) 
for the stretching are not affected "by the elastic properties of the 
core layers. 

Equations (70), (72), and (73) have "been treated in reference 1 "by 
means of a stress function t, which, together with the deflection w, 
was taken as one of two "basic variables. In what follows an alternate 
treatment is given, in which the problem is reduced to three simultaneous 
equations for the quantities ßx, ßy, and w. On the "basis of these three 
simultaneous equations a problem not; considered in reference 1 is treated, 
namely, the "bending of a rectangular plate which is simply supported on 
all four edges.' 

To reduce equations (70), (72), and (73) to three simultaneous 
equations for ß2, ßy, and w, first a quantity <a   is defined "by 

(ü = = ^ + ^L 
ox 

55a 
öy 

(7h) 

Introducing equation (72) into the first of equations (70), in view of 
equation (7^-), there is obtained 

CD + V2W = - q/(h + t)Gc (75) 

Next, Ox, Mg-, and M^y are taken from equations (72) and (73) and the 

result is substituted in the second of equations (70). This gives, after 
slight transformations, 

This same problem has also been solved by L. H. Donnell by a 
method which differs from the one employed here. (See reference 5 
where the case of the homogeneous plate iB considered.) 
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jBL- V2ßx - 2(h + t)Gcßx + ^[^ - 2(h + t)Gcv] + % = 0 (76) 

In an analogous manner the following further equation is obtained: 

_D1_ ^ _ 2(h + t)Gcßy + |_[Ä _ 2(h + t)Gcv] + ^ =  0 (77) 

In order to.solve equations (75) to (77) two equations are next obtained 
involving w and ca   only. Differentiating equation (76) with respect 
to x and equation (77) with respect to y and adding the two resultant 
equations, in view of equation (lh),  gives 

2P* . V2co - 
1 - V2 

2(h + t)Gc(ü) + V2w) +^ + ^ = 0 

and, making use of equation (75), 

V^CD = §£*1(^♦S) (78) 

The following procedure may now he carried out:  (a) Solve 
equation (78) for CD, (h) with this value of (a   solve equation (75) 
for Vj (c) suhstitute a> and w in equations (76) and (77) and solve 
for ßx and ßy, and (d) eliminate extraneous terms in ßx and ßy 

hy considering equation (7^). 

Before deriving the solution of a prohlem along these lines, 
the explicit differential equation for w which follows hy combining 
equations (75) and (78) may he given 

V^w = 1 <L + 
dm- % 

2 Vox 
öm^ 
öy 

Ä 
(h + t)Gc 

(79) 

Note that the effect of transverse shear occurs on the right side of 
the equation only.  In order to compare the magnitude of the q terms 
on the right of equation (79), assume that relevant changes of q 
occur over distances of order I  (where I    may or may not he a 
representative diameter of the plate). Then, as order-of-magnitude 
relations, there results 
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_SL - 
% Efth' 

V2q = 0/ 
(h + t)Gc   U2hGi 

(80) 

From equation (80)t  it follows that transverse shear ceases to he a 
secondary effect as soon as I    is of order \[ht uEf/Gc or of smaller 
order. 

Bending of rectangular plate with simply supported edges.— The edges 
of the plate are assumed to he at x = 0,a and y = 0,h and along these 
edges moments and deflections are assumed to vanish. Further, 

mx = my = 0 

q = Z_ Z_ qmn sin \L
X
  
sin Mny 

m=l n=l 

(81) 

where 

^ = mit/a 

Mn = njr/b 

(82) 

From equation (78),  it follows that 

ÜD = i 7   7      2 m 2sin ^ 8in VnJ + "h (83) 

where (\    is a harmonic function. Putting equation (83) into 

equation (75), 
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V2^ = II ±mn 
1/D 

V2 + Mn2       ft t)Gc 

sin A^x sin ^j - oe^ 

■which is integrated to 

"ill Imn 

Om2 + Mn2)' 
1 + 

D(^m2 +  Mn2) 
(h + t)Gc 

sin XJJJZ sin p^y + wh    (84) 

where wh is the general solution of vVh. = -qh. It is to he expected 
and may he shown explicitly that for the plate which is simply supported 
all around w^ = o^ = 0 and, as in the Navier solution for the plate 

without transverse shear deformation, the particular integral is the 
complete solution of the prohlem. 

Equation (84) may "be rewritten in the more explicit form 

w = 
Djf 2-2- r«2 ^«2L2/h2)l2 [m2 +n2(a2/b2)]

; 

X sin SÄ x sin B& y 
8. D (85) 

When Gc = <x>}  equation (85) reduces to Navier's solution WJJ. Equation (85) 
is more readily interpreted hy means of the ratio w/wjj of deflection 

with and without transverse shear deformation. On the "basis of 

equation (85), there may lie ohtained the following equation (86), 

8Setting «2/2(1 - v2) = 5.4 and (Ef/Gc)t(h + t)/a
2 = ß, 

equation (86) takes on a form which contains as a special case the 
result of equation (l8) of reference 5. 
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wN 
W 

WN 

(h + t)Gc =     _ (h + t)tEf   ygww 

ww 
2(l - V

2
)GC 

WTT 

1 + Jt2 Ef (h + t)t 

q-rcn sin mnx/a ein nny/b 

-2 * "2(*sA-g> (86) 
(l - v2)Gc        a2        X-^-  qjan sin mjtx/a sin nny/b 

AZ_ [m2 + n2(a2/b2)]2 

For the case of a uniform load intensity q = Constant and for the 
center of the plate (x = a/2, y = "b/2) equation (86) "becomes 

JL = 1 + £ 1. 
vN 

(h + tH 
2  (I-V2)GC      * 

sin mff/2 sin ng/2 

mn[m2 + n2(a2/b2)j 

sin mjt/2 sin njc/2 

[m2 + n2(a2/b2)]2 mn 

(87) 

The ratio of the series is I.98, when a/b = l, and the ratio of the 
series is 1.11 when a/b = l/2. 

For the case of a concentrated load at the center of the plate 
the deflection ratio at the point of load application assumes the form 

w 
ww 

i       «2 1 + -r 
E4 

(1 - v2K 
(h + t)t 

L 

(sin mff/2 sin njr/2)2 

m2 + n2(a2/b2) 

(sin mjr/2 sin njt/2) 

[m2 +n
2(a2/h2)]2 

(88) 

Now it is easily shown that the numerator series in equation (88) 
does not converge and consequently V/WJJ = 00 in this case. A more 
detailed consideration shows that in any plate theory which takes 
transverse shear deformation into account the deflection under the point 
of application of a concentrated load must "become infinite in contrast 
to what happens when transverse shear deformation is not taken into 
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account  This difference, of course, vanishes as soon as the load 
intensity becomes finite, and then the theory with transverse shear 
deformation taken into account is more accurate than the theory which 
does not take into account this effect. 

For the sake of numerical illustration take again the square 
plate (a/b = l) with uniform load distribution. According to equation (07), 
the deflection at the center is increased "because of transverse shear by 

the factor 

i . 1 + 9.7 5£ IlLigiÜ (87a) 
wn       Cxc  a^ 

Take h = 1.0 inch, t = 0.1 inch, a = 10 inches. Ef/Gc =200 
and V = 1/3. Tn®n, according to equation (87a), w/wjj = 1 + 2.3, so 
that in this'case the deflection with transverse snear is more than three 
times the deflection when shear deformation in the core is neglected. 

Returning now to equation (84) for w and equation (83) for CD 

and substituting these two equations in equations (76) and (77) in order 
to determine the changes of slope ßz and ßy, after slight transfor- 

mations there results 

ß = _ 1 >  >  ^^ A cos Xmx sin uny 

B = - I V V  QPnMn A sin X&  cos Mn7 

(89) 

Equations (89) are remarkable for the reason that they are not affected 
by transverse shear deformability. According to equations (73), "the 
same is then true of the bending and twisting couples %, %, and M^y. 
It is not easy to see why, in this statically indeterminate problem, the 
magnitude of the internal forces, as well as that of the deflections, does 
not depend on the elastic properties of the core. The analysis, however, 
shows that the distributions of Mj, Jfy, and M^, and therewith 
of Qy and Qy, remain the same as those obtained under the assumption 

that Gc = 00. In this connection the following remark may be made. 
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Evidently the following three "boundary conditions, w = % = ßy = 0 

along the edges x = 0,a, have heen satisfied. In order that the last 
of these three conditions he satisfied there are necessarily nonvanishing 
edge values of the twisting couples M^y. The same is true in the theory 

without transverse shear deformation, where, however, no alternative 
possihility exists, as in that theory only the "boundary condi- 
tions w = Mj = 0 are relevant. For the present system of equations 
three "boundary conditions must he formulated for every plate edge. Thus 
it is possible although mathematically complicated to solve the prohlem 
of the rectangular simply supported plate with the edge condition ßy = 0 
replaced "by the condition M^ = 0. In that case, which will not he 
pursued here, there evidently will he a distrihution of internal stresses 
which is modified "by the effect of transverse shear deformation. 

Cylindrical "bending of plates.- As a further relatively simple 
example of application of equations (70), (72), and (73) prohlems are 
considered for which 

d( )/öy = 0 

■ö( )föx  «d( )/dx = ( )' 

%y = V= my = ßy = 0 
(90) 

and where consequently the prohlem reduces to the following system of 
equations:9 

V  + q = 0 

Ms'   -   Qr/r   +  Ittj    =   0 

Qj = (h + t)Gc(px + w«) 

(l - v2)Mx = D*ß2' 

(91) 

9Note that in order to ohtain the prohlem of the sandwich "beam from 
equations (90) and (91) the only changes which are necessary amount to 
setting v = 0 in equations (91). 
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To set into evidence the effect of finite values of Gc in 
equation (91), the following system of equations is deduced from 
equation (91): 

Dwv &)  m  q + m « _ *£1 q + mx 
(h + t)Gc 

(92) 

M* = - Dw t» 
Dq 

(h + t)Gc 
(93) 

^ = -Dw 111 
Dq' 

(h + t)Gc 
+ m2 (9h) 

ßT = - w« + 
Or 

(h + t)Gc 
(95) 

Solutions to the following problems are listed: 

(l) Simply supported plate of Bpan I    carrying a 
load q = qp cos nx/l.    Boundary conditions: w(±2/2) = Mx(±Z/2) = 0. 

w = 00 i + j£ 
Ef  (h + t)t 

2  d-v2^      *£ 
COS   JCt/l 

U/iY 
(96) 10 

As the problem is statically determinate as far as moment and force are 
concerned there is no modification of M^ and Qx due to the finite 
value of Gc. 

-^The factor in brackets may again "be written in the form 1 + ^.hß} 

with ß = fEf/Gc)/[_(h + t)t/2 J, using the notation suggested in 

reference 5. 
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(2) Simply supported plate of s-oan I    carrying a uniform 
load q = qQ. 

3s£ 
D16 24 :*H-*E- SD 

(h + t)Gc22 (*)2 
- 1 (97) 

From this for the center deflection, 

w(0) = _5_ aOl^E. +. £4    Ef    (h + t)t 
"384  D [   5 fc.^   Z2 . . 

(98) 

It is seen that the correction factor for the center deflection is almost 
the same as that for the cosine load curve (equation (96)), the only 
difference "being a change of the factor «2/2 = 4.93 into 24/5 = 4.80, 
that is, a reduction of the shear correction factor by at most 3 percent 
is present.11 

(3) Built-in plate of span 2 carrying a uniform load q = qQ. 

The boundary conditions are: w(±2/2) = ßY(il/2) = 0 (and 
not wf(±Z/2) =0). X 

w -  10Z     - 
384D" m -i - 2 1 + 24D 

(h + t)Gc22 m' -1 (99) 

From this there follows for the center deflection. 

w(0)  = <iol 4r 

384D 
1 + 24 Ef (h + t)t 

(1 " V2)GC 22 
(100) 

Comparison of equations (lOO) and (98) shows that for the "built-in 
plate the effect of transverse shear deformation is very much more 

i:LNote that according to equation (87a) the shear correction factor 
for the square plate of width a = 2 is more than twice as large as the 
shear correction factor for the plate strip of width 2. 
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pronounced than it is for the simply supported plate, a factor 2^/5 
in the latter case "being replaced "by a factor 2k  in the former case.12 
As a further result in this problem of the "built—in plate, "by putting 
equation (99) into equation (93), it is found that the moment 
function M^ does not contain any terms depending on the effect of 

transverse shear deformation. This again is somewhat surprising as 
in this case it is not possible to determine the moment function "by 
statics alone. 3 

Circular plates; rotational symmetry.— As no examples of solutions 
of circular sandwich—plate problems have as yet "been published and as 
it is of some interest to determine in which way the shear correction 
factors change in going from a problem for the plate strip to the 
corresponding problem for the circular plate, the equations for 
axisymmetrical transverse "bending of circular plates are "briefly 
discussed. 

Polar coordinates r,0 are introduced and notation which is 
customary in plate theory is used. As a consequence of equa- 
tions (70), (72), and (73), the following system of equations is 
obtained: 

drQr 

"dr" + r<* = ° 

drlVL 
-jf. - MQ - rQr + no,. = 0 

> (101) 

Qp = (h + t)Gc(ßr + dw/dr) (102) 

-*-2A somewhat similar percentage increase must take place in going 
from equation (86) for the rectangular plate with all four edges simply 
supported to a formula (which has not yet "been derived) for the rectan- 
gular plate with all four edges "built in. 

-*-3AS a problem where the moment distribution is in fact dependent 
on the effect of transverse shear there may be mentioned the problem of 
the cylindrically bent plate with both ends built in, which carries a 
load qj = q-j_x instead of the load q0 = q.Q.    This problem also may be 

solved by means of equations (92) to (95)- 
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Mj. - VMQ = D* dßr/dr 

% - vMf = D*ßr/r 
(103) 

According to equation (79),  the equation for the deflection w 
will be 

Ä = q + I I 5jfc _   V2a 
2 r dr   (h + t)G 

(104) 

where V2 = (l/r)d[r d( )/dr]/dr. Having found w by meana of 
equation (l04), ßr may he determined from 

Pr "  är  (h + t)Gc 
dw 
dr ij rq dr (105) 

and therewith % and Mg are obtained from equations (IO3). 

In the present problem it seems to he somewhat more convenient to 
proceed as follows: Combine equations (lOl) and (103) to obtain as 
equation for the change of slope ^T) 

Dli- 
r dr 

r <L_/i ^ßr 
dr \r dr = 1 _ 1 ^^r 

r dr (106) 

Having ßr}  Mp and Mg are found from equation (103) and Qr, from the 
second of equations (101), 

^*#^% 

^»(H-S 
(107) 
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Q- = D d  /l cLrßr\ 
dr\r    dr y 

+ mp (108) 

Finally, with this value öf Op, w is found hy integrating equation (102), 

— A* ♦0^3') 
JV dr 

(h + t)Gc 
(109) 

Deflection of circular plate with huilt-in edge.- The "bending is 

considered of a plate with transverse load q = qn(r/a)  and 
with %. = 0. First, from equation (106), 
now 

Dßr - O! §- + 02(5) 
Qn&- +   Co ^ 10ge £ +  . .      .. 3 a   e a  (n + if)(n + 2)' r(l)n+3    <-' 

Attention is restricted to complete plates with no concentrated 
load at the center, and consequently it is necessary to set c2 = c^ 

in equation (110). This gives 

= 0 

Dßr - °i I-+ -—rr.—-ö\ßj 
(n + 4)(n + 2) 

SJ^I (zf+3 (110a) 

Putting equation (110a)  into equation (IO9),  there.results for the 
transverse deflection   w 

a %® + 
qna^ /T'\n+I<- 
 2® + Ck 

(n + k)(n + 2) 

D 
a2(h + t)Gc 

2ci + In*2     /rV 
(n + 2)2W 

,n+2 
(111) 
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Taking the case of a plate of radius a with "built—in edge, that 
iSj with the "boundary conditions 

lip (a) = w(a) = 0 (112) 

there results 

Dßr = 1na' 
(n + k)(n + 2)2 \a) aj (113) 

and 

Dw = __jlDa_ 
(n + 2)2 

D 

(r/a)n^ - 1 _ 1 (r/a)2 - 1 
(n + 4)2 2.     nTT 

a2(h + t)Gc er2 - ü (11^) 

From equation (ll4) there follows for the deflection at the center of 
the plate 

Dw(0) = 1na 

2(n + 2)(n + k)2 
1 + (n + k)2 Ef    (h + t)t 

n + 2 (l - V2)GC  * 
(115) 

Consider the following special cases: 

(l) Uniform load distribution qn = q0. From equation (115), it 

follows for the ratio of deflection with and without transverse shear 
deformation that 

w(0) 

[v(0)] 
= 1 + 8 

Go.»» 

Ef    (h + t)t 

(l _ v2)Gc   a2 
(116) 
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Equation (ll6) may be compared with equation (lOO) for the deflection 
of the infinite plate strip of width I   with "built—in edges. 
Setting Z = 2a, it is seen that, while the transverse shear correction 
factor for the strip has a value 6, the corresponding factor for the 
circular plate is 8. This is consistent with the earlier comparison 
"between the simply supported Btrip and the simply supported square 
plate, except that there the change is from ^.8 to 9.7. 

(2) Linearly increasing load distribution q = q^r/a. From 

equation (115), it follows that 

v(0) 

[Wo)]*« 
-l+4? 

Ef    (h + t)t 
3 (I-V2)GC  *2 

(117) 

showing that the correction effect is only slightly greater than in the 
case of the uniform load distribution. 

(3) Load increasing linearly from edge to center, q = qp + q-^r/a). 
(ll = -^oT^ From equation (115), i* follows "by superposition that 

Dw(0) = 1pa 

2 X 2 X 16 

q0a 

1 + 8 

2 x 3 x 25 

E^ 

U-V2)GC 

1 + 25_ IfL 

(h + t)t 

(h + t)t 
3 d_v2)G;^-a^- 

Dw(0) = ^3*0' 
M  r 

32 x 150 
1  3000   Ef    (h + t)t 

387 (l-V2)Gc   a2 
(118) 

Comparing the factor 3OOO/387 = 7.76 which occurs in equation (ll8) 
with the corresponding factors 8 and 8.33 in equations (ll6) and (117) 
it is seen that, in the foregoing three problems at least, there is 
little difference "between the transverse shear stress correction factors 
in the case of three different loading conditions for the circular, 
clamped-edge plate. The fact that this agreement should not "be expected 
to hold generally follows again by considering the case of a point 
load at the center of the plate, for which the shear correction factor 
would again be infinite. 
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The examples of this section should tie augmented "by the solution 
for the circular plate of radius a, which carries a load distributed 
uniformly over a smaller circle which 1B concentric with the "boundary 
of the plate. 

Circular Eings 

As the simplest example of a curved sandwich structure there are 
considered in this section stresses and deformations of -circular rings 
in their own plane. As was found'in the general developments of 
part I of this report, in a curved sandwich structure there will he 
the effect of "both transverse shear and normal stress deformation.1^ 

There are set for the relevant coordinates and variables 

er = &e 

El = a 

ßl = ß 

Ql = Q 

ai = 1 

ui = v 

WU = N 

MX1 = M 

Pi = p rn-L = m 

ö(  )/oJ =d(  )/ad0 = (   )7a 

X± = X = |[(h + t)t/a2] (Ef/Ec) 

(119) 

The equilibrium equations (25) to (28), (31), and (3^) reduce to 
the following equations: 

N» + Q + ap = 0 

Q* - N + aq = 0 
(120) 

l^The effect of transverse shear stress deformation on homogeneous 
circular rings has "been considered "by L. Beskin in reference 6. 
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M1 - aQ + am = 0 

C£m = s -  [M/(h + t)a] 
(121) 

The stress-Btrain relations (56), (59), (60),, (6l), and (64) to (67) 
reduce to the following equations: 

(1 + i x> . i c[T. +, + Üj^ia] (122) 

Q =  (h + t)Gc[ß + J(v» - v)] (123) 

(1 + X)M = ^ D*(ß'   + s/Ec) (124) 

The load terms p, q,  m, and s are given, according to 
equations (19) to (22), "by 

I - (^ "^V* (* " "£> 

(^ * ^ - (* - ^>» 

>        (125) 

h + t 

1 
8 =2 
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Ring sector acted upon "by end "bending moments.— As a first problem 

on circular rings, which illustrates the effect of transverse normal 
stress deformation, there is taken this "basic case for which, as is 
known, there must "be the same stress distribution at all sections 
0 = Constant of the ring. 

According to equations (120) and (121), 

N = Q = 0 

M = MQ (126) 

Equations (122) to (12^) "become 

v' + w = 0 

ß + (w* - v)/a = 0 
(127) 

(1 + \)MQ  = D*ß*/a (128) 

The significant result of this consideration is contained in equation (128), 
which may "be written in the alternate form 

M-*-* 
D* 

1 + X 
w' + w 

1 (h + t)t Ef 
2 a2   Ec 

(129) 

Thus, in this case of pure "bending the transverse flexibility of 
the core is responsible for a reduction of the "bending stiffness 

factor .D* = = t(h + t)2Ef which is obtained exactly when Ec = 0 

and practically when Ec is of the same order of magnitude as Ef. 
Equation (129) shows that the reduction of D* is significant 
whenever Ec is so small that the ratio Ec/Ef is of the same order 

of magnitude as the ratio (h + t)t/er. 
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As a numerical example take the following values: h = 0.9 inch, 
t = 0.05 inch, a = 20 inches, and lf/Ec = 1000, for which 

1 (h + t)t Ef  ,  0.95X0.05 x 1000 = 0>0595 
2 a2   Ec  2      400 

indicating a reduction in "bending stiffness of ahout 6 percent. 
Changing a from 20 inches to 10 inches changes the effect from 
6 percent to 2k  percent. Changing Ef/Ec from 1000 to 2000 increases 
the effect from 6 percent to 12 percent. Altogether it may he said 
that this effect is of noticeahle magnitude for some geometrically 
reasonable structures when the modulus ratio Ef /Ec "is of the 
order 1000 or more. Assuming aluminum face layers with Ef = 10' psi, 
this means that Ec » 10^ psi, which is well within the range of some 
presents-day core—layer materials. 

Comparing equation (129) with the earlier formulas for the effect 
of transverse shear stress deformation, for instance with equation (ll6) 

in which a represents the plate radius and ohserving that Sc 5! ± Ec, 

it is seen that the correction terms are of the same form, the difference 
"being an appreciahly larger numerical factor in the expression representing 
the shear effect. 

Closed circular ring acted upon "by uniform radial load.— Having 
rotational symmetry, d/d0 = 0 and v = ß = 0. Also set p = m = 0. 
The remaining equations permit the determination of the stresses in 
the face and core layers in a way which depends on the extent to which 
the load is applied to the outer (upper) and inner (lower) face membranes. 
Equation (12) "becomes 

N = aq (130) 

From equations (121), it follows that 

aU = s ~ [MAh + *)»] tol) 
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The stress—strain relations (122) to (124) give 

■ cK1+CH - (h + t)q 
12Ina 

aq 
C* 1 + X      (h + t)C* 

3        12Eca2 - S      (132) 

and 

M = D* 
1 + X aEr 

(133) 

A closed circular ring subjected to a uniform radial load 
distribution q is stressed not only "by a uniform axial force N = aq, 
as would "be expected, "but in addition is stressed "by a uniform "bending 
moment M, the magnitude of which is given "by equation (133). The 
explanation of this result is that for a ring with relatively soft 
core the circumferential stress distribution depends on the extent to 
which the external radial load is applied to the inner and outer forces, 
respectively. Koughly speaking, for a sufficiently flexible core layer 
the load qu goes predominantly into the outer face layer, while the 
load qj goes predominantly into the inner face layer. 

According to equations (k6), in the present case for the stresses 
in the two face layers, 

Nu4N+FTtM 

1
      2. h + t 

M 
(13*0 

According to equations (130) and (133) and in view of the definitions 
of D* and X, this may "be written 

'»-t(» ♦ 1^1) 
> 

(135) 
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Combining next equations (l3l) and (133), for the transverse 
normal stress in the core layer, the following expression is obtained: 

5m  1 + X 
(136) 

For a specific example assume that the radial load is applied 
entirely to the inner face of the ring so that qu = 0 and, according to 

equation (125), 

-(i-V).« 

s = K1 - ^e> 
(137) 

With q and s given "by equations (137), equations (135) and (136) 
"become 

'* - Ik 

•» -1(] 

aqz h + t\  a(l 
2a   )l + 

h + t\(l + 2X)aqz 

2a 1 + X 

(138) 

at    = - l/i - h + t\_JL CT£m 2V 2a   ,/l + (139) 

It is seen that the flexibility of the core layer increases the circumfer- 
ential stress in the loaded face layer in the ratio (l + 2X.)/(l + X)  and 
decreases it in the unloaded face layer in the ratio l/(l + X),  where X 
is defined "by equation (119), compared with the equal values of these 
stresses when Ec = 

Considering once more the numerical data under the section entitled 
"Ring sector acted upon "by end "bending moments," it is found, for 
instance, that the stress in the inner face layer may "be about 6 or 12, 
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or 2k  percent higher than the corresponding stress calculated without 
taking into account the transverse flexibility of the core layer. 

Ring sector acted upon hy radial loads qu and q^, uniform in 
circumferential direction and with vanishing resultant q.— Again it is 
assumed that d( )/d0 = 0, m = p = 0 and now in addition that q = 0, 
so that, according to equation (125),  the only nonvanishing load 
term is s. Further it is assumed that the ends 0 = ± a of the ring 
sector are free of stress, that is, N(do,) = QL(±H)  = M(dax) = 0. The 
ordinary theory of circular rings would then indicate the absence of 
deformations in the entire ring. In the present case there is found 
a type of deformation peculiar to the sandwich ring, which may perhaps 
"be compared to the action of a Bourdon gage. 

Solving first equations (120) and (121) and satisfying the end 
conditions of the ring sector, 

N = Q = M = 0 

ffU " = s 
(1^0) 

The stress—strain relations (122) to (124) are then 

v' + w = 0 

aß + w' - v = 0 > 

ß' = -s/Ec 

(IM) 

Assuming s independent of 0, from equation (l4l) there is obtained "by 
integration, with constants of integration Alj( Ag, and Ao, 

ß = - =jF_ 0 + Al E, 

= —a =S- 0 + A^a + A2 cos 0 + A3 Bin 0 
> 

w = a -S- 
Ec 

+ A2 sin 0 — A3 cos 0 

(1^2) 
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As a specific example consider a complete ring, slitted radially 
at the section 0 =  it, so that a = *. Prescribe furthermore the 
symmetry conditions ß(0) = v(0) = w(0) 
there is obtained from equation (1^2) 

0. Under these conditions 

E„ß = -B0 

Ecv = -as(0 — sin 0) 

Ecw = as(l — cos 0) 

> (1*3) 

From equations (1*3), it follows that the radial slit, which is 
of zero width "before the loads qu and q^ are applied, opens under 
the action of the loads to a width given "by 

(_) _ T(ä) - 2* J- - 2«a(l + 1L±JI)& (ihk) 

For a numerical example take a = 10 inches, h = 1 inch, t = 0.05 inch, 
Ec = 10,000 psi, and qu = 20 psi, and o"btain 

v(-ir) - v(jt) = 0.132 inch (1*5) 

The foregoing three examples of ring analysis hare "been discussed 
in some detail, "because they illustrate relatively simply the effect of 
transverse normal stress deformation in the theory of curved sandwich 
structures, without involving at the same time the effect of transverse 
shear stress deformation. 

Bending of semicircular ring "by end shear forces.— Now a prohlem is 
considered in which "both the values of Ec and Gc affect the result 
of the analysis. In the equilibrium equations (120) and (121) all 
external load terms are set equal to zero and then, by integration and 
from the "boundary conditions, that is, from 

N(± f) = M(± f ) = 0 
(1*6) 
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the following expressions for N, M, and Q are obtained: 

Q = Qo sin 0 

N = QQ cos 0 

M = -aQo cos 0 

(1^7) 

The stress—strain relations (122) to (124) "become 

(1 + X/3)Qo cos 0 = (C*/a)(v'  + w) 

QQ sin 0 = (h + t)Gc[ß + (w» - v)/a] 

-(1 + X)Qoa cos 0 = (D*/a)ßf 

Integration of the last of equations (1^8) gives 

D*ß = -a2(l + X)QQ sin 0 

y d*8) 

(1*9) 

where a constant of integration has "been eliminated "by means of the 
symmetry condition ß(0) = 0. Substituting equation (1^9) in the second 
of equations (1^8), 

i(w' - v) = QQ sin 0 
1     a2(l + X) 

(h + t)Gc 
+   D* 

= QO Bin 0 fiy 
1 (h + t)t/Ef  Ef \ 
2 a2  \Ec %)_ 

(150) 

Simultaneous solution of equation (150) and the first of 
equations (l48) for v and w gives as general expressions for v 
and w. 

v = A0 cos 0 + Aj sin 0 + AQ  cos 0 

w = A0 sin 0 - (A± +  B)cos 0 + Ag sin 0 
(151) 
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where Aj and A2 are arbitrary constants of integration and A 

and B are found to lie 

A = 

B = 

Qpa: 

2D* 

Qpa: 

2D* 

-       1  (h + t)t/^ Eg\        W       ^> 
2         a2       \EC Gc/      a2c*V        3, 

i +1 (h + t)t/!Ef . M 
2   a2   V

Ec Gc) M1** 
(152) 

As further conditions, it is prescribed that v(0) = r(j£\ =  0, which 

makes A^  = A-j_ = 0 in equation (151). There remains 

v = A0 cos 0 

w = A0 sin 0 - B cos 0 

> (153) 

Of particular interest are the values of w(jt/2) and w(0), the first 
of these giving the radial deflection of the point of load application, 
the second giving the change of radius at right angles to the applied 
load. It is found that 

jr Q0a: *(?) = *?-*!* 

w(0) = -B = - £ 

Equations (15*0 and (155) contain the interesting result that, for 
this prohlem, transverse shear and transverse normal stress affect the 
outcome formally in nearly the same way.  If the generally unimportant 
terms with D*/a2C* are omitted, which amounts to the usual assumption 
of circumferential inextensihility of the ring, then the effects of 
finite Ec and Gc occur in exactly the same way. 
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For a numerical example take h =0.9 inch, t = 0.05 inch, 
a = 20 inches, Ef/Ec = 1000, and lf/Gc = 2000. This gives 

1 (h + t)t =   1 
2 a2     16,800 

D* = 1 (h +  t)2 =  1 
a2C*  ¥   a2     1770 

, = 1 (h + t)t 
Ef =  1 

2   a2   Ec  TO 

1 (h + t)t ^ =  2 
2 a2   Gc  I6.8 

The factors in "brackets in equations (15*0 and (155) "become 

1 + _J^ + _^ + _I_(i +  L_\ = 1.18 
16.8  16.8  1770V  3 x 16.8/ 

and 

1 + —1- + -2— L-/l +  ±-— ] = 1.18 
16.8  16.8  I77OV   3 x 16.8/ 

Thus, in the present example the flexibility of the core is responsible 
for an l8-percent increase of deflection-load ratio, and of this 12 percent 
is due to transverse shearing and 6 percent to transverse normal stress. 
Compared with these two effects the effect of circumferential extensibility 
of the composite ring is seen to "be negligible. As a further numerical 
illustration, it is noted that reducing the ring radius a from 20 inches 
to 10 inches, with all other data unchanged, changes the l8-percent 
correction to a 72—percent correction. 

Bending of complete circular ring under action of two concentrated 
radial"forces at 9  = ±n/2.— The solution of thiB problem may be obtained 
by superposition of the solutions for the semicircular ring under the 
action of end shear forces QQ (equations (lk6)  to (155)) and under the 
action of end loading moments MQ (equations (126) to (129)). 
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The first step consists in determining Mg in terms of QQ such 
that the sum of the ß's from equations (129) and (1^9) assumes the 
value zero for 6 =  it/2, that is, the value of the superimposed "bending 
moment at 0 = rt/2 must make the tangent to the deflected ring at 
this point horizontal. Combining equations (129) and (1^9) in this 
manner, there is ohtained 

it 1 + X 
2 D* aMQ 

1 + X 20 

or 

MQ = (2/rt)aQo (156) 

It may "be noted that equation (156) is a further case of a statically- 
indeterminate prohlem where transverse shear and normal stress flexibility- 
do not affect the internal force and moment distribution "but affect only 
the state of deformation of the structure. 

Further, the radial deflections w(rt/2) and w(0) due to the 
action of MQ are calculated, in order to combine them with equations (152) 
and (153).  Integrating equations (129) and (127) with the "boundary 
conditions v(0) = v(«/2) = 0, there is obtained for the displacements 
due to M3, 

D*w = -(1 + X)MQ&
2
(I - I cos 0) 

D*v = (1 + \)MQ&2(e - &  sin e) 

y (157) 

and, in particular, 

D*w(0) = (1 + X)Moa2(| - l) 

D*w(|) = -(1 + X.)Moa2 

(158) 
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Combining equations (158) with equations (154) and (155) and taking MQ 

from equation (156), there follows for the resultant displacements 

Kf) -¥■ {(f - ?)(-»+1 h+& (i +if 

where X.« =  5 7^ has "been put as a further abbreviation. 

Equations (159) may he written in the alternate form 

>     (159) 

w(«/2)   = 0.149 Sjg£ D* 1 + x + 5.29 UG + [> a2C* M) (160) 

w(0)  = -O.I37 Qpa3 
D* 1 + x + 3.65 k, 

\ a2C* M) (161) 

When X = XG = 0 and when the composite ring is assumed axially 
inextensible, which amounts to putting D*/a2C* = 0 in equations (l6o) 
and (l6l), then equations (l6o) and (l6l) reduce to well-known results 
of circular—ring analysis. 

Comparing equations (l60) and (l6l) for the closed circular ring 
with equations (154) and (155) for the open semicircular ring, it is 
noteworthy that for the semicircular ring X and XQ. occur with equal 
weight, while for the closed circular ring the influence of XQ. is 
considerably greater than the influence of X. Thus, for the closed 
circular ring the effect of transverse shear deformation is much more 
important than the effect of transverse normal stress deformation, while 
for the open semicircular ring both effects occur in a much more nearly 
equally important way. 

For a numerical example of the use of equations (l60) and (161) 
take again the values for the numerical example given in the section 
entitled "Bending of semicircular ring by end shear forces." This 
gives for the expressions in braces 
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1 + _i_ + 2 X ^-29 + 1^2.  , 1.69 
1 + 16.8    16.8    1770     ^ 

and 

1 . _i_ + 2 x 3.65  3^65 _ , - 
1 + Io\8 +     16.8  + 1770 " 1,5° 

Thus, while the effect of transverse stress deformation for the open 
circular ring amounted to 18 percent, the corresponding corrections 
for the closed ring are 69 and 50 percent, respectively. 

The next step in the analysis of sandwich—type circular rings 
would "be the general solution of the system of equations (120) 
to (1210 for arbitrary load distributions. This, evidently, is 
possible and further specific examples of interest might he analyzed 
on the "basis of the general solution. Such extension of the work of 
this section is, however, left for future considerations. 

Circular Cylindrical Shells 

In this section the general system of equations of part I of this 
report is restricted to the equations of the theory of circular cylindrical 
shells. The treatment of sandwich-type shells of this kind is shown to 
he not appreciably more difficult than the analysis without the effect 
of transverse shear and normal stress. 

As specific examples some problems of rotationally symmetric 
deformations are treated. In particular the influence coefficients 
are obtained for a semi—infinite shell acted upon hy tending moments 
and transverse forces at one end of the semi—infinite shell. With these 
influence coefficients an explicit solution is obtained for the prohlem 
of the infinite circular cylindrical shell acted upon hy a pressure 
■band of zero width. 
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In the general equations of the problem there are set for the 
relevant coordinates and variables, 

i-L = ae l2 = x E]_ = a 

I?2 = °° Su = W6 N22 = Wx 

Qi = % 92 = Qx Mil = % 

%> =MJC Ul   =   T U2 = u 

ßi = ße ß2   =   ßX m± = TOQ 

"fe = "be 

ai 

Pi   =  P0 

= C&2  = 1 

P2 = Px 

w12 = N21 = Nxe 

%> -Jfel - *X0 

(162) 

The equilibrium differential equations (25) to (28), (3l), and (3*0 
"become 

dNx  1 öNxe      A :r-— + - -ZT2"  +   P-sr = ° dx   a de   *x 

cM. X0 

dx 

1ÖN0 Qe 
a 00   a P0 = 0 

+ 1 a a0 
0% N0  a + q = 0 

a  u 

(163) 

f^k + I ^0 
ox   a 08 

^Mg0 + 1 0% 
ox   a 00 

— Qx + mx = 0 

- Qe + me = 0 

(164) 
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CTU = s - % 

(h + t)a 
(165) 

The stress-strain relations (56), (59), (60), (6l), and (64) to (67) 

"become, with X%  = Xj2 = Q> xl  = 2^h + t)t/a2J(1f/Ec) = x> 

(1 + |W - VNx = ^lil1 + a + lL±lli| V       3^ e x |_a Se      a        j^aEc   J 

(166) 

0^=  (h + t)Gc(ßx+|*) 

(167) 

(1 + X)M0-VM£=D^|M + _|_) 

Mj - VMg = D*| 

2(1 + V 

(& 
Vox > (168) 

When Gc = Ec = <» (and therewith X = 0) equations (163), (164), 
(l66), (167), and (168) reduce to the known system of equations in which 
deformations due to transverse stresses are neglected. The solution of 
the present system of equations is not essentially more difficult than 
the solution of the system with Gc = Ec = 00. in particular also here 
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there may "be obtained a trigonometric double—series solution, as a 
generalization of Navier's solution for the flat plate (references 7 
and 8). 

For this trigonometric double-series solution there is set, 

^ = / / 9-mn 8in m0 sin W* 

Pe - \ \    P0mn cos me Bin nx/l 

Pi = / y    Pxmn sin ^  cos nx/Z 

% = / / "mm sln "^ C0B xac/'1 

^ = / / m0mn cos me Bin nI/^ 

8 = / / Smn sin m0 sin nx/l 

(169) 

v = \ \    Wjnn sin m0 sin nx/Z 

v =  \ \     Vjjjn cos m© sin nx/Z 

u = / \     u^ sin m.0 cos nx/Z 

ßjc =   \     \    ßxmn sin m0 COB nx/l 

ß0 =   \     \    ßemii cos m0 sin nx/Z 

(170) 
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(171) 

ox= 2_2_ ^™n sin m0 cos ^l 

% -    /  / %mn cos m0 sin ^A 

(fp Ne) = "Y_ Y_ (Nxmnj N0mn)sin me sin ^i 

N
Z0 = 2_ 2_Nx0mn cos m0 cos ^ 

(*^ Me) = 2_  \_ (V* *W) Bin m0 sin W* 

^0 = 2_ 2_ ^cemn COB m0 cos ^ 

When equations (169) to (171) are substituted in equations (163) 
to (l68) there remains for every value of m and n a system of 
13 simultaneous equations for the 13 Fourier coefficients which occur 
in equations- (170) and (171). 

A system of only five simultaneous equations for the five Fourier 
coefficients in equation (l70) is obtained if first equations (163) 
and (l6k)  are reduced to five equations for the five unknowns v, v, u, 
ß ,  and ßg,  hy means of equations (l66) to (l68). 

For the present,  the task is not carried out of obtaining the 
deformation and internal stress Fourier coefficients of equations (170) 
and (l7l) in terms of the Fourier coefficients of the load terms in 
equation (169). Instead, the axisymmetrical case., to which 
equations (169) to (171) reduce when sin m0 and cos m0 are 
interchanged throughout, and then only the terms for m = 0 are taken, 
is treated separately. 

Axisymmetrical deformation of circular cylindrical shell.— In 
equations (163) to (l68) set 

d( )/be  = 0 

d( )ßx  = ( )• 
Nx0 = % = Mex = °     *[ (172) 

v = ß0 = 0 

m0 = p0 = 0 
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and then the following system of equations has to he dealt with: 

N*' + Px = 0 

V - (%/a) + q = 0 

(173) 

MJJ;' — Qx + mj- = 0 

o£m = s - J%/(h + t)a 
(174) 

i + |)N0 - VNX = c*fw      (h + t)q" 
°  [a        12aEc   J 

Nz - VN0 = C*u« 
(175) 

Ox = (h + t)Gc(ßx + w») (176) 

(1 + \)MQ - VMJJ. = D*s/aEc 

"r - VM0 = D*ßX* 

(177) 

The Bystem of equations (173) to (177) may he reduced to two 
simultaneous equations for ßx and Q^ as follows: First, 

express M^. in terms of ßx "by means of equation (175) and suhstitute 

the result in equation (ilk).    From the first of equations (177), it 
follows that 

M0 =T^L-  ^ +  D^s 
1 .+ X (1 + X.)aEc 

(178) 
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and this, introduced into the second of equations (177), gives 

= (1 + X)D* ß , +    VD*s  (179) 
^  1 + X - V2 X   aEcd + X _ V2) 

Equation (179) is introduced into the first of equations (17^) and, 
restricting attention to shells of uniform section properties, there 
is obtained 

(l + MD* ßx" - .^ = -^ ^        (180^ 
1 + X - V2 alc(l + X - V

2) 

To obtain the second of these equations, first, introduce into 
equation (176) the value of w» which follows from equation (175), 
giving 

Pz + c* (h + t)Gc } ♦ t)v -vv - ^r11]     (181) 

In equation (l8l), N0* and Nx' are taken from equation (173) and, 
after slight transformations, there is obtained 

^MV-T^T^-^'^)    (lte)* C*K ^ 3J™- (h + t)GL 

Comparing equations (l80) and (182) with the corresponding 
equations without the effect of transverse shear and normal stress 
deformation, it is seen that the effect of transverse normal stress, 
which is represented "by X, merely somewhat modifies some of the 
coefficients of the left sides of the corresponding system of equations 
with E„ = 00. In contrast to this, the effect of finite Gc is to c   
introduce a new term into the left sides of these equations. This new 
term may he of appreciable importance, as will he shown. 

Having solved equations (l8o) and (l82), Mg- and MQ    are obtained 
from equations (179) and (178), respectively; N0 follows from 
equation (173) *n tne form 

Ne = a(V + q) (183) 
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and v follows from equation (175) in the form 

w = (a/C*) (l + X/3)aQx.' + aq + v | p2 dx (184) 

The following examples illustrate the use of equations (178) to (l&k). 

Infinite circular cylindrical shell with periodic load distrihution.- 
In specialization of equations (169) to (171), set 

q = q„ sin \ix 

s = s„ sin px 

Px = Pl(i °os  Mi 

% = "XLI COB Mi 

(185) 

w = w„ sin px 

u = UJJ cos yx        L 

ßx = Px|a COB Mi 

(186) 

Qx = Q^ cos MX 

Nx = N
XM 

Bin Mi 

N0 = N0n Bin Mi    f 

Ms = M
XM 

Bin MX 

*% = ^M Sin MX 

(187) 
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By introducing equations (185) to (187) into equations (l8o) 
and (l82), two simultaneous equations are obtained for the ampli- 
tudes Qj.  and ß , as follows: 

(1 + X)D* 2 VD* 
1 + X - V' 

R  — a— P*H  C* 

M^PXH + v - ^ +1 +™ _ v. 2 aE„ 

1 + ^V2 + 
2tE* 

i2(h + t)Gr 

p 
(188) 

To simplify the further discussion, by setting in equation (l88) 
nv      = s    = pX|I = 0, there is obtained for    ßx      and    0^ 

1 + X - V2  V 
x^ "  (1 + X)D*    „3 

<W=7?K 

(189) 

The quantity K is given "by 

K = 
Z2t X  2    Z^t   Ef  1 + X - V2   4Z^ 

1 + — + +  
3  it2 (h + t)a2 Gc  (1 + X)nh    (h + t)2a2 

-1 

(190) 

where use has "been made of the relation p. = jt/Z. In equation (190) 
the term X/3 will usually he of little importance. The other two 
variable terms represent the effect of transverse shear deformation 
and of shell curvature, respectively. When the radius a is so large 

that  Z /(h + t)2a « 1, the shell behaves under the action of the 
given load essentially as a plate strip. The effect of transverse 
shear is important as soon as the term (2/fl2)(Z2/a2)(t/(h + t))(Ef/Gc) 
is not small compared with 1. 

Before evaluating a numerical example the following further 
formulas which are readily obtained from equations (179), (183), 
and (l84) are listed: 
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N, 0ji = a^n(! ~ K) 

*H = 

p 

C* 1 - 1 + 4 K 

(191) 

Equations (l9l) show that in this problem not only is the deflection 
increased "because of the effect of transverse shear, and with that 
the hoop stress resultant N0^, "but now also an effect is found on 

the hending-monient distribution M^, in the opposite sense. The effect 
of transverse shear is to reduce the magnitude of the "bending moments 
in the shell. This result is in contrast to what was found for the 
examples which were worked out in the sections on plate analysis and 
circular ring analysis and is therefore of particular significance. 

Equation (l9l) for w^ may "be compared with the corresponding 
expression for a simply supported plate strip of width I,  with 
sinusoidal load. The result for this case must follow from equation (l9l) 
in the limit a-?» and agree with equation (96),  which was previously 
obtained. To compare the last of equations (I9I) with equation (96), 
the last of equations (l9l) is written in the form 

w. 

1 + X - V2 
(1 + X)p* 

1 + 
1 + X - yc 

(1 + X)D* © 

1 + 

c* 
a'- 

($) 
1 + X   I  (h + t)t Ef 

1 + X — V 2 2 

1 + Of 
E^ 

h + t a„ 
2t 

Gc 
— %  (192) 

1 + 
1 + X - yg 

(1 + X)D* 

k 
.(1)  91 
W „2 

Equation (192) reduces to the equivalent of equation (96) if in 
it a -—^ 00, 

From a comparison of equations (192) and (96), it is further 
concluded that the correction due to transverse shear is greatest 
in this case when a = «,, so that, in this case, the curvature of 
the shell tends to reduce the additional shear deformation, "below 
the value obtained for the simply supported plate strip. 
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For a numerical example first take h = 1 inch, t = 0,05 inch, 
a = 10 inches, I  = 20 inches, Ef/Go = 200, Ef/Ec = 100, V = 1/3, 

and X = I 1,0\o0°'^ 10° = °-025- The factor K of equation (190) 

"becomes 

"w n noft + 
2 4o° x °-°5 x 100 + Ml-0.09) l6o>000 1 + 0.008 + - l(J0 x x  x 100 + 100 x ia 05 £ 

= (1 + 0.008 + 3.86 + 5^.5)  = O.OI685 

while without transverse shear and normal stress deformation 

(K)Gc=Ec=0. = (1 + 54.5)-1 - 0.0180 

The correction in this case amounts to ahout 6 percent. 

Changing the moduli ratio to Ef/Gc = 2000, Ef/Ec = 1000, 

K  = (1 + 0.08 + 38.6 + 5fc.5) =0.0106 

instead of E = O.O1685. The correction in this case amounts to 

0.0l80 - 0.0106 x 100 w -Tg percent. Thus again there is a case where 
O.OIO6 

omission of the effect of transverse shear deformation would give 
results which could not he used. However, it is noted that the effect 
of transverse normal stress deformation is quite small and may here 
safely he neglected. 

If the foregoing values of K are introduced into equations (191), 
it is seen that the percentage corrections apply to the "bending-moment 
value directly hut that for hoop tension and radial deflection the 
corrections are very small indeed.  In fact, in order that there he 
appreciahle corrections due to transverse shear on hoop tension and 
radial deflection, it is necessary that the half wave length of the 
sinusoidal load q he so small that K is at least of magnitude 0.25 
or more. 
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A case of approximately this kind is obtained if the half wave 
length I    is changed from 20 inches to 10 inches and the moduli ratios 
are again taken as Ef/Ec = 100, Ef/Gc = 200. Then, 

K = (1 + 0.008 + O.965 + 3M)'1  = O.I865 

whereas 

WE^-CO = (1 + 3M)-1   = 0.227 

The percentage change of K and therewith of M^ is slightly more 
than 19. The percentage change of WQ    and w is about kk. 

The foregoing numerical examples show that the effect of transverse 
shear may he significant in cylindrical sandwich—shell analysis and that 
moreover its magnitude will not in general he predictahle by the analysis 
of an equivalent fla-t—plate or straight—heam problem. 

For the infinite circular cylindrical shell with 
load q = q^ cos |ox the essential results are given "by equations (190) 

and (l9l). These results may he extended directly to the loading 
condition 

1 = / <ln cos nnx 

Hn = nit/2 

> 
(193) 

By  superposition, from equation (l9l) the following formulas are 
obtained: 

^x: = )  (on/Hn2)^ cos Hn* 

% = a > Ini1  - Kn) cos Vnx 

w = (a2/C*) 2_ qn 1 - (1 + \/3)Kn] 
c°s Mn* 

-1 

r (i<*) 
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The values of K_ are obtained from the formula n 

Kn = 
+ h.  +  2     l2t        ^_ 

3  n2«2 (h + t)a2 Gc 

f + k(l  + X - V2) 

(1 X)M n (h t)2a2 

-1 
(195) 

Having the solution for the infinite shell with periodic load 
distribution, it will "be only necessary to add to this the general 
solution of the differential equations without external load terms, 
in order to obtain the complete solution for any edge condition of 
the axisymmetrically stressed circular cylindrical shell of finite length. 
This additional solution will now "be obtained. 

Finite circular cylindrical shell acted upon "by edge moments and 
forces.— To solve equations (l80) and (182) with right-hand sides equal 
to zero, equation (182) is differentiated twice and ßx«•  is 
substituted from equation (l80). This gives 

a2 /-, , X\Q IV _    1    o 
M1  3>    (h + t)Gc * 

11 1 + X - Vc 

(1 + X)D* 
Qv = 0 

or 

XV Q* -2VV + V^ = o (196) 

where 

C* 

+ X/3)(h + t)Gc 

E, 

(1 + X/3)(h + t) Gc 
(197a) 

> ftc* 
Kn = 

1 + X - V<= 

\eft)*  (1 + X)(l + X/3)   sj(h  + t)a Vd + X)(l + X/3) 

1 +  X - V< 
(19Tb) 
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The auxiliary equation corresponding to equation (196) is 

2J2 - 2n-fTd  + km^  = 0 k  _ 
(198a) 

or 

?2  = m±
2 ±  ^m-^ - kw^ (198b) 

The solution of equation (I96) occurs in two different forms, depending 
on whether r2 of equation (198h) is real or not. According to 
equations (197) and (198h), r2 is complex as long as 

n±
k < ka£ 

or 

1 r      tEf       12    4[i-v2/d + x)] 
aH(h + t)(l + X/3)GCJ   (h + t)aa2(l + x/3) 

(199a) 

J 

To clarify this condition, neglect X (which is of very little importance 
here) and equation (199a) then becomes 

(199*) 

When equation (199) holds,  a quantity   k   may "be defined by 

k =  v/mj2 + i v/^mg2 - m^ (200) 

and the four roots of the characteristic equation are k, k, -k, 
and -k, where a bar indicates the taking of conjugates. The solution 
of equation (196) may be written 

p.        „   —kx ■ 7=7 —kx  n kx  7? kx feft = Cie   + C^e   + C2e  + Ü2e (201) 
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Where equation (199) d-°es not hold, which is the case for very small 
values of Gc/Ef only, all four roots of equation (198a) are real and of 

the form 

-\ 

ki = \|mi2 + \lmik ~ kme2 

k2 = -ki 

k3 = ^jm!
2 - \|m^ - lung2 

k^ = -k3 

(202) 

and the solution of equation (196) can he taken in the form 

kix    -kix    kox    -kox 
QJJ. = Axe   + Age 

x    + ^e        + -fy© (203) 

Before applying either solution to a specific prohlem, there are 
noted the following relations which follow from equation (200) 

kk = |k|2 = 2m22 

k + k = \[2 vjm!2 + 2mg2 
(204) 

Semi-infinite shell acted upon hy edge "bending moment and shear 
force.— There are the following "boundary conditions, 

Mx(0) = (! + ^V*    ß 1(0) = MQ 
1 + X - vd 

Qx(0) = QQ 

while for x = » these same quantities vanish.1-5 

(205) 

15For the same prohlem without the effect of transverse shear and 
normal stress, see reference 9. 
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Of particular interest in this solution are the values of 
deflection w(0) and change of slope ßx(0) at the section where 

the loads MQ and QQ are applied.16 

Taking first the case Ef/Gc < 2a/t for which equation (201) 
applies,  it is seen that the conditions at infinity require that 

C2 = C2 = 0 (206) 

so that 

—kx  _ —kx 
Qx = C^e   + C^e (207) 

The values of ßx may he obtained "by integration from equation (l80) 
in the form 

(1 + X)D* ß _ Ci -kz , Th  e-kx 
i2 Px " k2 

e   + " e 1 + X - V _2 
k 

(208) 

where two constants of integration have "been discarded to satisfy again 
the conditions at infinity. 

With equations (207). and (2O8) there is obtained from the boundary 
conditions (equations (205)) that 

Ci + Ci = Qo 

(Cx/k) + (öi/k) = -MQ 
(209) 

l°Wlthout transverse shear and normal stress deformation these 
relations are 

w(0) = 
\| 
i-yg 
D*C* Mo +$. k^l,     Qo 

\Ki-v2)c« 

M°) k\(1 - v2)c* 

in agreement with equations (236) of reference 9, where the homogeneous 
shell is considered. 
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This determines C^ and C-j_ in the form 

kQp + |k|2Mp 
^1 = =  

k - k 

-   kQp + |kl2Mp 
t'l =  -  

k - k 

(210) 

Equation (210) is introduced into equation (208) and there is 
obtained as the first of two "influence coefficient" formulas 

1 + x - vd |kp J (211) 

The second of these formulas follows from equations (l84), (207)^ 
and (210) in the form 

^-^..ßnV^Qol (212) 

Equations (21l) and (212) may "be written in more explicit form, 
using equations (204) and (197). The results are 

_ _    A (1 + x/3)(i + 
2       \/C*D* V        1 + X 

X-V2) 
Qo 

kC* 1 + X - Vc (C*/a2Gc) 
a2D* (1 + X)(l + X/3)  (h + t)(l + X/3) 

MQ (213) 
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and 

w(0)   = - 
\J7r*D* 4 (1 + X/3)(l + X - V2) 

1 + X 
MQ 

-£M)\[ N 
kc* 1 + x - vc 

<C*/f C°)    , ,   Qo  (21*) 
a2D* (1 + X)(l + X/3)       (h + t)(l + X/3) 

Neglecting the generally small effect of finite Ec in 

equations (213) and (2l4), that is, putting 
there may he written instead 

X = 0 in these equations, 

av/l" 
X \|C*D* 

%  +^ 
k(l - V2) c* 

i2D* 
1 + 

t/a 

!\/l - V2 
Ef 

£"0 (215)' 

w(o) = - ai! 
\|C*D*      C  N  a2D*    V    2\jl - V2 c 

Equations (215) and (2l6) contain the noteworthy fact that the 
correction factors for the effect of transverse shear are independent 
of the ratio t/h of face—layer thickness to core thickness. The 
complete formulas of course must and do contain the influence of the 
core thickness h. 

It is further noted that, while equations (211) to (2l6) have "been 

derived for the case that m^ < km^^, for which the complex solution 

holds, they are also valid, as is readily shown, when km^    > mj_ . 

Comparing-equations (213) and (214), and (215) and (2l6) with the 
equations listed in footnote 16 it is seen that:  (l) The effect of 
transverse shear modifies the deflection due to QQ and the rotation 

due to MQ hut not the other two coefficients, (2) the effect of 

transverse normal stress enters all four coefficients hut only in a 
minor way, and (3) the reciprocity relation that the deflection due 
to MQ is the same as the rotation due to QQ is carried over from 

the theory without the extra effects. 
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For a numerical example the following data are chosen: t = 0.1 inch, 
h = 1 inch, a = 10 inches, Ef/Ec =100, Ef/Gc = 200, V = 1/3, 

and X = I •
L,1

1Q0
0,1

 100 = 0.055, and, from equation (197), 

mi=l   0,1X200 =oM6 
x    10 \ 1.018x1.1 

 ! ~ °f°9  = 0.294 
100 X 1.21 X 1.018 

Then, according to equation (204), 

M2 = 0.173 

k + k = \[¥ V 0.182 + O.I73 = 0.84 

while without transverse shear deformation (m^ = 0) the value 

of k + k = O.59. According to equations (211) and (212), the effect 
of transverse shear in this case is to increase the rotation due to 
the edge moment in the ratio 0.84/0.59 = 1.42, an effect of 42 percent, 
The same increase is found for the deflection due to the edge shear 
force. Rotation due to the shear force and deflection due to the 
moments are practically unchanged. Likewise, the effect of transverse 
normal stress in this case is of negligible importance. 

As a further numerical example there is chosen t = 0.05 inch, 
h = 1 inch, a = 20 inches, Ef/Ec = 1000, Ef/Gc = 2000, 

and X = i !'°5 x 0-05 1000 = 0#065, and, from equation (197), 

m-, = 1  f   °'°1  2000 = 0.483 x      20\j 1.022 X 1.05 

\/l.05 X 20 N ±'u^ 
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From equation (2(A) then 

|k|2 = 0.095 

k + k = \[i" \J 0.23k +  O.O95 = 0.82 

while without transverse shear deformation (mj_ = 0) the value 

of k + k = 0.44. Thus the effect in this case is to increase edge 
rotation due to edge moment and edge deflection due to edge shear 
force in the ratio 0.82/0.44 = I.87, an effect of 87 percent. 

Infinite circular cylindrical shell acted upon hy transverse line 
load.— Calculation is restricted to the determination of deflection and 
"bending moment at the section x = 0 where the line load of intensity 2Qo 
is assumed to act. The result of the foregoing paragraph may he used as 
follows. Consider the infinite shell cut in two parts at the section x = 0 
and assume a tending moment MQ of such magnitude that the slope ßx(0) 

is zero. According to equation (21l), this gives 

MQ = - -^ = -    ,       % (217) 
k + k \J2M±

2
 + 4m22 

and therewith 

cM0) (k + k)2 -  [k|2   Qn __ _ ^_+J^ (2i8) 

(1 + \/3)^       . k + k \j2rn!2 + 4m22 

Equations (217) and (2l8) "become, with equations (204) and (197), 

MQ = (219) 

\fgjj2*--.^±x-v2 +_c*/i 
V Va2D* (1 + X)(l + X/3)  (h + t X/3)  (h + t)Gc 1 + X/3 
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/        x\  2      /   C* 1 + X - v2 C*/a2 1 
i1 f lr    \j a2p* (1 + \)(1 + X/3)       (h + t)Gc l_+_X/l w(0)  = - ^ 3r     V a^D* (1 + X)(l + X/3)       U + tjtic -I + VJ (220) 

°* '     ' C* 1 4- X - V2        ,      c*/s° C*    1 + X - V^   +  ^"/a- j 

\|a2D* (1 + X)(l + X/3)   (h + t)Gc 1 + X/3 

To give these formulas a somewhat less unwieldy appearance, the 
effect of finite Ec, that is, X = 0, may again he neglected, as is 

permissible in most cases; and there may he written 

MQ = v/(h + t>L      "^ (221) 
2^(1 " V2) 

N   2^J^^^aGc 

1 +  1 i ?f 

v(0) . _ \Q —d= VT^'* ± (222) 
*    tx/ÖT7T)a\ x      t%

Ef 
V    2v/rr^^c 

Some numerical examples are given as follows. 

Taking t = 0.1 inch, a = 10 inches, Ef/Gc = 200, and V = l/3, 

transverse shear deformation reduces Mo to l/\/2.05 times the 

value which holds when Gc = «>, that is, there is ahout a 30 percent 
reduction in MQ. At the same time the deflection under the line 

load is 3.05/\J2.05 = 2.l4 times what it is when Gc = 00; that is, 
thöre is an increase of ahout 115 percent in w(0). 

Taking t = 0.05 inch, a = 20 inches, and Ef/Gc = 200, MQ is 

decreased 'bj  a factor \/4/5 = O.89, while w(0) is increased by a 

factor 1.5/\/l.25 = 1.3^. 

Taking t = 0.05 inch, a = 20 inches, and Ef/Gc = 2000, MQ is 

decreased hy a factor l/\JJ~62 =  O.526, while w(0) is increased hy 

a factor 6.25/\J3.&  = 3.29. 
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Equation (220) for w(0) may be compared .with equation (ll6) for 
the circular plate of radius a. This comparison shows that, while for 
the plate both the ratios t/a and (h + t)/a enter into the correction 
factor, the correction factor for the cylindrical shell contains the 
ratio t/a only; that is, the corrections (hut not the results) are 
independent of the ratio of face-layer thickness to core thickness in 
this case of a cylindrical shell. 

Spherical Shells 

In conformity with customary usage, the following notation is 
introduced: 

6l = a0 

ct2 = sin 0 

N22 = N0 

%> = % 

M12 = Mfie 

*i = y 

u2 = V 

l2 = a0 

% = 1^ = a 

N12 = N21 = Nj2 

Mll = Mj* 

Pi = P0 

ßl = ß0 

al = 1 

Nil = N0 

% = 00 

^2 = % 

P2  = Pe 

ul = u 

ß2 = h 

(223) 

Attention is here restricted to problems with rotational symmetry 
and the following relations are used: 

ä( )ße  = 0 

N00 = %  = M0e = P0 = me = v = ß0 = 0 

(224) 

The differential equations of equilibrium (25) to (28) (*i) 
and (34) hecome, setting '    ' 

ö( )/o0 = d( )/d0 = ( )t 
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(sin pd)*  - cos 0N0 + sin 0Q^ + a sin0 P0 = 0 (225) 

(sin 0Q0V - sin 0(lty + H0)   + a sin 0 q = 0 (226) 

(sin 01fyV - cos 01% - a sin 000 + a sin 0 y = 0 (227) 

ff5m +  (*V + ^)/(h + t)a ~ 8 = ° (228) 

The stress-strain relations (.56), (59) to (6l), and (64) to (67) 
"become, if there is set in accordance vith equation (63) 

(1 + §., - (v - fe - c^« ♦ »jfi* 4) <836) 

(l + §fr - (v - |)N0 ■ Of "*J + "^£) («U 

QjJ . (h + t)G0 (ß0 + "4^*) (232) 

(1 + x)M0 - (v - \)«e - %-fa' * £) (233) 

(1 + X)Bfe - (V - X)M0 == Etfo oot 0 + fA (23<t) 
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There is first given a simple special solution of this syBtem of 
equations and then a generalization is obtained of the two simultaneous 
equations for QA   and ßd   which are fundamental in the theory of 

homogeneous isotropic shells. 

Uniform stress distribution in a spherical shell.— Set in 
equations (225) to (23*0 P0 = m^ = 0 and assume that Bß, BQ,  Gty, My, 
and MQ    are independent of 0.    From equation (225) it follows that: 

N0 = Be  = NQ "" 

= 0 

(235) 

From equation (226) it follows then that 

and from equation (227) it follows that 

M0 = MQ = MQ (237) 

Equation (228) gives 

(T£m = s - 2Mo/(n + t)a (238) 

In equations (230) and (231) set u = 0 for reasons of symmetry and 
ohtain 

(1 + |x-v)Ho = ¥. + iÜL^)|£9        (239, 
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or, with No from equation (236) and X from equation (229), 

(C*/a)w = |(l-V)aq (240) 

Equation (232) is identically satisfied when ß0 = 0. Equations (233) 

and (23*0, in conjunction with equation (237), give 

(1 + 2X - V)MQ = (D*/a) (s/Ec) = 1 t(h + t£ =£ 
2    a   Er 

or 

Mp ■ (h + *?«*  B 
1 + 2X - V 

(241) 

Then, from equation (238), 

at    . (1-V)B 
bm  1 + 2X - V 

(242) 

Equation (242) may he compared with equation (136) for the circular ring. 

According to equation (46), there are obtained from equations (236) 
and (24l) the following expressions for the stress resultants in the 
outer ("upper") and inner ("lower") face layers: 

A   + JLiiW  = aft + —% ) 
\ 2a   y ^        \4      1 + 2X - vj 

(l -iLAJiV  = aft fc? ) 
\    2a / '   \4  1 + 2X - V/ 

>• 
(243) 

Comparison of these results with the corresponding results for the 
circular ring (equations (135)) shows that for given values of q 
and s there is a greater difference "between Nu and N^ in the 
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spherical shell than there is in the circular ring, the reason "being 
the relatively larger influence of the s-term in equation (2^3). 

For a specific example, it is again assumed that the radial load is 
applied entirely to the inner face so that qu = 0 and, according to 

equations (20)'and (22), 

n    A   h + t\2 

*= I1 - -2a—; ai 

l/,  h + t\2_ 
y (2kk) 

Substitution of equation (2kk)  in equation (2^3) gives 

(l + i^>* ■ (* - *£*f 
aqj 1 - v 

1 + 2X - V 

w, - (l - h + t\a^I 1 + k\ - V 1 V   2a )  k    1 + 2X - v 

> (2if5) 

As a numerical example, taking X = O.O595, as in the example given in 
the section entitled "Closed circular ring acted upon hy uniform radial load ' 
and V = 1/3, it is found that the factor in Nj which contains the effect 
of the core flexibility is (l + 0.36)/(l + 0.18) = 1.15. Thus, where 
for the circular ring there was a 6-rpercent stress increase, there now 
is a 15-percent stress increase. 

Reduction of axisymmetrical problem to two simultaneous equations 
for Q0 and ßrt.- The fundamental results of reference 10 for 
homogeneous shells may "be readily extended to sandwich shells as 
follows: ' 

Equations (225) and (226) are used to express Nw and Ne in 
terms of Qd. 

N0 cot F-LW (21*6) 

N0 = 00' + F2(0) (24?) 
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In equations (2^6) and (2^7) the functions Fx and F2 are given hy 

F-, = —^ x  sin' 
—^2- J (q cos 0 - p0 sin 0)sin 0 d0 (248) 

,     F2 = -^—lYs^ F-LV   + aPjzj sin jzf| (2^9) 

Next the displacement components u and w are expressed in terms 
of QA,  "by means of equations (230), (231), (2k6),  and (2Vf)-. 

Subtraction of equation (231) from equation (23O) gives 

^(u» - cot0 u) = (1 + V)(W0 - W0) 

=  (1 ■+ V)[-(O0' - cot 0<fy) +. Fi - Fg] (250) 

Equation (112) is integrated to 

(C*/a)u = -(1 + V)(Q0 + F3) (251) 

where F^ is given "by 

,3 ..,J
FlW - !gf0) ^ <^> 3      rJ    sin 0 

Equations (25l) and (252) are introduced into equation (231) and the 
following expression is obtained for w: 

(C*/a)v = (1 + 1/3)(cot 0Q0 + Q0f) + F4 (253) 
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where F^ is given "by 

?k = ~ %r^- 4 + (1 + v)cot ^ F3 + (* + |)F2 - (v - |)FI    (254) 

Equations (251) and (253) are introduced into equation (232) for 

and the first of the two simultaneous equations for QA    and ß^ is 
obtained in the form • 

(h + t)Gc C* (l + ^(cot0<ty + Q0')' +?4« 

+ (1 + V) (00 + F3) 

which may "be rearranged to read1? 

00» '   +   COt <j) Q0» - cot20 - v~ V3 + £*  1 
1 + X/3      Gc  (h + t)(l + X/3) i 00 

c* + rti7i""" ^w (255) 

The function Fr> is given "by 

F - (1 + v)F3 + Fk 
5     1 + X/3 (256) 

Introducing the operator 

L s ( )' + cot 0( )' - cot20( ) 

^TWhen X = 0 and Gc = 00 and when no external loads are present, 
this equation checks with the first of equations (g) on page h&)  of 
reference 9. 
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equation (255) may finally also "be written 

where 

^ = (JäL- =£ - v + A—Vr <258) 

^     bi + t GC 3/i + x/3 

The second of the two simultaneous equations is obtained somewhat 
more directly as follows: Write equations (233) and (23^) in the form 

14, =  22/a [(1 + xW + (V - X)cpt 0 
"      1-V2 +2X(1 + V)LV '   * 

+  (1 + V)s/Ec] (259) 

Mu =  5lZa [(1 + x)cot 0 ßg$ + (V - X)ßw ' 
1-V2 +2X(1 + V)L ' ^ 

+ (1 + V)s/Ec] (260) 

Introduce equations  (259)  and (260)   into the moment equilibrium 
equation (228) and ohtain 

 2^ LfM  + cot 0 ß0* - (cot20 +• fffjty + (1 + V)s'/Ec 

1 _ V2 + 2X(1 + V)L V ' ■ 

+ (1 + V)s'/Ec    - aQ^ + am0. = 0 (26l) 
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Again, using the operator L,  this may he written in the form 

(L - j^)ty ~ §|[l " V2 + 2X(1 + V)](^ - Fg(0)      (262) 

The function Fg is given "by 

F6 = -(1 + v)f- - a|[l - V2 + 2X(1 + V)] y (263) 

Equation (262) may he compared with the second of equations (g) 
on page 469 of reference 9. 

Analysis of edge effect for spherical shell.- The special case of 
no distrihuted surface load and no concentrated load at the apex of the 
shell is ohtained "by setting 

P5 = F6 = 0 

Following again a known procedure from the theory without 
transverse stress deformation, there may he set 

Qi 

\|sin 0 

ii. 
\/sin 0 

(264) 

Q-.' Qi 
     - - cot 0       

y/sin 0      2 \/sin 0 

11 % 
11 

- cot 0 -£= + ß cot20 + I) Ql 

ysin 0 \/sin 0 \/sin 0 

(265) 

* ,1 
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with corresponding formulas for ßßf* and ßpl". Introduction of 

equation (26k)  into equations (257) and (262) gives 

v«+ (^i + |-f ert2^ + rfx75Pl-° (266) 

Plt. _ flLzLL -1 + 1 cot20\ßi - g§[l - V2 + 2X(l + V)] QX - 0        (267) 

Attention is restricted to the cases for which F^ = Fg = 0 in 

equations (266) and (267) and the prohlem is considered of the shell 
subject to edge loads Ä) , (fy)0>  ^ ^0)o 

at a section 0 = <j(0. 

Assuming that cot 0O 
is no"t larSe compared with unity10 and that the 

effect of the edge loads is restricted to a narrow edge zone so 

that I Qx| « |QiM|, I ßj « |ßlf,|^ equations (266) and (267) may he 

simplified to 

Q,I . _ £,Q, +  C*   ß-L = 0 (268)" 
x x x  1 + X/3 

Pln _ a|[l - V
2 + 2X(1 + V)] Qx = 0 (269)* 

Equations (268) and (269) show that the influence of finite EC(X / 0) 
in the edge-effect prohlem consists, except in extreme circumstances, 
in minor modifications of the results for Ec = 00.  The quantity ~i 

which represents the influence of finite Gc and which is 

E, 
~ _ 2t   f Mi ~ FTT Gc 

(270) 

may, however, in practical cases he large compared with unity and not of 
negligible influence on the results. 

1^When cot 0j » 1 the shell is termed a "shallow" shell which is 
not considered in what follows. 
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Equations (268) and (269) may he compared with equations (l80) 
. and (182) for the cylindrical shell. This comparison shows that the 

influence of finite Gc in the edge-effect prohlem is of the same 
.nature for the spherical and cylindrical shells. Thus, results of the 
same quantitative nature will he ohtainahle as in the section on 
cylindrical shells under the headings entitled "Finite circular cylindrical 
shell acted upon "by edge moments and forces" and "Semi-infinite shell acted 
upon "by edge tending moment and shear force." 

This work is not herein carried further to specific applications. 
It is apparent that such applications may he worked out with hardly any 
more difficulty than when the effect of the core deformahility is not 
taken into account. 

CONCLUDING REMARKS 

A system of "basic equations has heen derived for the analysis of 
small-deflection prohlems of sandwich-type thin shells. This system of 
equations reduces to Love's theory of thin shells when the transverse 
shear and normal stress deformahility of the core of the sandwich is of 
negligihle importance. The system of hasic equations has heen applied 
to a number of specific prohlems from the theory of plates, circular 
rings circular cylindrical shells, and spherical shells, and it has 
heen found that the effects of hoth transverse shear and transverse 
n°™- stress deformation may he of such magnitude that an analysis 
which disregards them gives values for deflections and stresses which 
are appreciahly in error. 

Numerical calculations have heen in the nature of sample calcu- 
lations, illustrating hoth the use of the equations and the possihle 
effects of using them. Examples have heen chosen from the point of 
view of relative simplicity as well as with the thought to illustrate 
most clearly the consequences of the extra deformations which have 
heen taken into account. It is unavoidahle that, in so doing, some of 
the examples may he of little interest for aircraft structural analysis 
and that some prohlems may not have heen analyzed which would have well 
I «a J     5n the contents of thi<3 report and which at the same time 
Would have heen of considerahle practical importance. 

The general analysis has heen restricted hy the following two 
order-of-magnitude relations:  (l) t/h « 1 and (2) tEf/hEc » i} 

where t is the face-layer thickness, h is the core-layer thickness, 
ü.f is the elastic modulus of the Isotropie face-layer material 
and Ec ia the elastic modulus in the transverse direction of the 
core-layer material. Therewith it is felt that very likely nearly 
all situations have heen covered in which the effect of transverse 
core flexibility is of significant practical importance. It is 
evident, however, that if desired the theory could he extended so as 
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+ i™.!,,«« cases where one or hoth of these two order-of-magnitude 
relSions a^Hotsatisfied. The main limitation of the present 
anaSeia ifthe omission of all finite^eflection and Instability 

effects. 

Massachusetts Institute of Technology 
Cambridge, Mass., May 26, 19^7 
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Figure 1.-   Element of composite shell, showing coordinates and dimensions. 
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Figure 2.-   Element of composite shell, showing location and orientation of 
stress resultants in face layers and core layer and orientation of external 
loads. 
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